Nuprl Lemma : uni_sat_imp_in_uni_set
∀[T:Type]. ∀[a:T]. ∀[Q:T ⟶ ℙ].  ((a = !x:T. Q[x]) 
⇒ (a ∈ {!x:T | Q[x]}))
Proof
Definitions occuring in Statement : 
uni_sat: a = !x:T. Q[x]
, 
unique_set: {!x:T | P[x]}
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
member: t ∈ T
, 
and: P ∧ Q
, 
so_apply: x[s]
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
so_lambda: λ2x.t[x]
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
unique_set: {!x:T | P[x]}
, 
uni_sat: a = !x:T. Q[x]
Lemmas referenced : 
all_wf, 
equal_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
dependent_set_memberEquality, 
hypothesisEquality, 
independent_pairFormation, 
hypothesis, 
productEquality, 
cut, 
applyEquality, 
thin, 
lambdaEquality, 
sqequalHypSubstitution, 
sqequalRule, 
universeEquality, 
introduction, 
extract_by_obid, 
isectElimination, 
functionEquality, 
because_Cache, 
Error :functionIsType, 
Error :inhabitedIsType, 
Error :universeIsType, 
cumulativity, 
Error :isect_memberFormation_alt, 
lambdaFormation, 
productElimination, 
dependent_functionElimination, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality
Latex:
\mforall{}[T:Type].  \mforall{}[a:T].  \mforall{}[Q:T  {}\mrightarrow{}  \mBbbP{}].    ((a  =  !x:T.  Q[x])  {}\mRightarrow{}  (a  \mmember{}  \{!x:T  |  Q[x]\}))
Date html generated:
2019_06_20-AM-11_18_13
Last ObjectModification:
2018_09_26-AM-10_25_20
Theory : core_2
Home
Index