Nuprl Lemma : uni_sat_imp_in_uni_set

[T:Type]. ∀[a:T]. ∀[Q:T ⟶ ℙ].  ((a !x:T. Q[x])  (a ∈ {!x:T Q[x]}))


Proof




Definitions occuring in Statement :  uni_sat: !x:T. Q[x] unique_set: {!x:T P[x]} uall: [x:A]. B[x] prop: so_apply: x[s] implies:  Q member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  member: t ∈ T and: P ∧ Q so_apply: x[s] subtype_rel: A ⊆B prop: uall: [x:A]. B[x] so_lambda: λ2x.t[x] implies:  Q all: x:A. B[x] unique_set: {!x:T P[x]} uni_sat: !x:T. Q[x]
Lemmas referenced :  all_wf equal_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity dependent_set_memberEquality hypothesisEquality independent_pairFormation hypothesis productEquality cut applyEquality thin lambdaEquality sqequalHypSubstitution sqequalRule universeEquality introduction extract_by_obid isectElimination functionEquality because_Cache Error :functionIsType,  Error :inhabitedIsType,  Error :universeIsType,  cumulativity Error :isect_memberFormation_alt,  lambdaFormation productElimination dependent_functionElimination axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality

Latex:
\mforall{}[T:Type].  \mforall{}[a:T].  \mforall{}[Q:T  {}\mrightarrow{}  \mBbbP{}].    ((a  =  !x:T.  Q[x])  {}\mRightarrow{}  (a  \mmember{}  \{!x:T  |  Q[x]\}))



Date html generated: 2019_06_20-AM-11_18_13
Last ObjectModification: 2018_09_26-AM-10_25_20

Theory : core_2


Home Index