Nuprl Lemma : atom2-deq-aux

[a,b:Atom2].  uiff(a b ∈ Atom2;↑=a2 b)


Proof




Definitions occuring in Statement :  eq_atom: eq_atom$n(x;y) atom: Atom$n assert: b uiff: uiff(P;Q) uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a rev_uimplies: rev_uimplies(P;Q) implies:  Q prop:
Lemmas referenced :  assert_of_eq_atom2 assert_witness eq_atom_wf2 equal_wf assert_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut independent_pairFormation lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis productElimination independent_isectElimination independent_functionElimination atomnEquality sqequalRule independent_pairEquality isect_memberEquality because_Cache equalityTransitivity equalitySymmetry axiomEquality

Latex:
\mforall{}[a,b:Atom2].    uiff(a  =  b;\muparrow{}a  =a2  b)



Date html generated: 2016_05_14-PM-03_33_46
Last ObjectModification: 2015_12_26-PM-06_00_57

Theory : decidable!equality


Home Index