Nuprl Lemma : atom2-deq-aux
∀[a,b:Atom2].  uiff(a = b ∈ Atom2;↑a =a2 b)
Proof
Definitions occuring in Statement : 
eq_atom: eq_atom$n(x;y)
, 
atom: Atom$n
, 
assert: ↑b
, 
uiff: uiff(P;Q)
, 
uall: ∀[x:A]. B[x]
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
rev_uimplies: rev_uimplies(P;Q)
, 
implies: P 
⇒ Q
, 
prop: ℙ
Lemmas referenced : 
assert_of_eq_atom2, 
assert_witness, 
eq_atom_wf2, 
equal_wf, 
assert_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
independent_pairFormation, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
productElimination, 
independent_isectElimination, 
independent_functionElimination, 
atomnEquality, 
sqequalRule, 
independent_pairEquality, 
isect_memberEquality, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
axiomEquality
Latex:
\mforall{}[a,b:Atom2].    uiff(a  =  b;\muparrow{}a  =a2  b)
Date html generated:
2016_05_14-PM-03_33_46
Last ObjectModification:
2015_12_26-PM-06_00_57
Theory : decidable!equality
Home
Index