Nuprl Lemma : cons-ndlist
∀[T:Type]. ∀[L:ndlist(T)]. ∀[x:T].  [x / L] ∈ ndlist(T) supposing ¬(x ∈ L)
Proof
Definitions occuring in Statement : 
ndlist: ndlist(T)
, 
l_member: (x ∈ l)
, 
cons: [a / b]
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
not: ¬A
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
prop: ℙ
, 
ndlist: ndlist(T)
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
sq_stable: SqStable(P)
, 
implies: P 
⇒ Q
, 
squash: ↓T
Lemmas referenced : 
sq_stable__no_repeats, 
no_repeats_wf, 
no_repeats_cons, 
cons_wf, 
ndlist_wf, 
l_member_wf, 
not_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
hypothesis, 
sqequalRule, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
lemma_by_obid, 
isectElimination, 
thin, 
hypothesisEquality, 
setElimination, 
rename, 
isect_memberEquality, 
because_Cache, 
universeEquality, 
dependent_set_memberEquality, 
productElimination, 
independent_isectElimination, 
independent_pairFormation, 
independent_functionElimination, 
imageMemberEquality, 
baseClosed, 
imageElimination
Latex:
\mforall{}[T:Type].  \mforall{}[L:ndlist(T)].  \mforall{}[x:T].    [x  /  L]  \mmember{}  ndlist(T)  supposing  \mneg{}(x  \mmember{}  L)
Date html generated:
2016_05_14-PM-03_31_09
Last ObjectModification:
2016_01_14-PM-11_20_29
Theory : decidable!equality
Home
Index