Nuprl Lemma : length-remove-repeats

[T:Type]. ∀[eq:EqDecider(T)]. ∀[L1,L2:T List].
  ||remove-repeats(eq;L1)|| ||remove-repeats(eq;L2)|| ∈ ℤ supposing ∀x:T. ((x ∈ L1) ⇐⇒ (x ∈ L2))


Proof




Definitions occuring in Statement :  remove-repeats: remove-repeats(eq;L) l_member: (x ∈ l) length: ||as|| list: List deq: EqDecider(T) uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] iff: ⇐⇒ Q int: universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a all: x:A. B[x] and: P ∧ Q prop: so_lambda: λ2x.t[x] so_apply: x[s] set-equal: set-equal(T;x;y) iff: ⇐⇒ Q implies:  Q rev_implies:  Q
Lemmas referenced :  set-equal-no_repeats-length remove-repeats_wf remove-repeats_property all_wf iff_wf l_member_wf member-remove-repeats
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis independent_isectElimination because_Cache dependent_functionElimination productElimination sqequalRule lambdaEquality isect_memberEquality axiomEquality equalityTransitivity equalitySymmetry addLevel allFunctionality independent_pairFormation impliesFunctionality independent_functionElimination

Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[L1,L2:T  List].
    ||remove-repeats(eq;L1)||  =  ||remove-repeats(eq;L2)||  supposing  \mforall{}x:T.  ((x  \mmember{}  L1)  \mLeftarrow{}{}\mRightarrow{}  (x  \mmember{}  L2))



Date html generated: 2016_05_14-PM-03_26_38
Last ObjectModification: 2015_12_26-PM-06_23_09

Theory : decidable!equality


Home Index