Nuprl Lemma : no_repeats-union-list
∀[T:Type]. ∀[eq:EqDecider(T)]. ∀[ll:T List List].  no_repeats(T;l-union-list(eq;ll))
Proof
Definitions occuring in Statement : 
l-union-list: l-union-list(eq;ll)
, 
no_repeats: no_repeats(T;l)
, 
list: T List
, 
deq: EqDecider(T)
, 
uall: ∀[x:A]. B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
implies: P 
⇒ Q
, 
l-union-list: l-union-list(eq;ll)
, 
all: ∀x:A. B[x]
, 
so_lambda: so_lambda(x,y,z.t[x; y; z])
, 
top: Top
, 
so_apply: x[s1;s2;s3]
, 
uimplies: b supposing a
, 
prop: ℙ
Lemmas referenced : 
list_induction, 
list_wf, 
no_repeats_wf, 
l-union-list_wf, 
list_ind_nil_lemma, 
no_repeats_nil, 
list_ind_cons_lemma, 
no_repeats_union, 
no_repeats_witness, 
deq_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
thin, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
hypothesis, 
sqequalRule, 
lambdaEquality, 
independent_functionElimination, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
lambdaFormation, 
rename, 
independent_isectElimination, 
because_Cache, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[ll:T  List  List].    no\_repeats(T;l-union-list(eq;ll))
Date html generated:
2016_05_14-PM-03_25_15
Last ObjectModification:
2015_12_26-PM-06_22_24
Theory : decidable!equality
Home
Index