Nuprl Lemma : bool-deq_wf

BoolDeq ∈ EqDecider(𝔹)


Proof




Definitions occuring in Statement :  bool-deq: BoolDeq deq: EqDecider(T) bool: 𝔹 member: t ∈ T
Definitions unfolded in proof :  deq: EqDecider(T) bool-deq: BoolDeq member: t ∈ T uall: [x:A]. B[x] all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q prop: rev_implies:  Q uiff: uiff(P;Q) uimplies: supposing a so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  eq_bool_wf bool_wf equal_wf assert_of_eq_bool assert_wf all_wf iff_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity sqequalRule dependent_set_memberEquality lambdaEquality cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis lambdaFormation independent_pairFormation because_Cache addLevel allFunctionality productElimination impliesFunctionality independent_isectElimination applyEquality

Latex:
BoolDeq  \mmember{}  EqDecider(\mBbbB{})



Date html generated: 2016_05_14-AM-06_07_14
Last ObjectModification: 2015_12_26-AM-11_46_12

Theory : equality!deciders


Home Index