Nuprl Lemma : equipollent-function-function
∀[A,B,C:Type].  A ⟶ B ⟶ C ~ (A × B) ⟶ C
Proof
Definitions occuring in Statement : 
equipollent: A ~ B
, 
uall: ∀[x:A]. B[x]
, 
function: x:A ⟶ B[x]
, 
product: x:A × B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
equipollent: A ~ B
, 
exists: ∃x:A. B[x]
, 
member: t ∈ T
, 
biject: Bij(A;B;f)
, 
and: P ∧ Q
, 
inject: Inj(A;B;f)
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
surject: Surj(A;B;f)
, 
squash: ↓T
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
true: True
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
equal_wf, 
biject_wf, 
squash_wf, 
true_wf, 
spread_to_pi12, 
iff_weakening_equal, 
pair_eta_rw
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
dependent_pairFormation, 
lambdaEquality, 
spreadEquality, 
productElimination, 
thin, 
independent_pairEquality, 
hypothesisEquality, 
applyEquality, 
functionExtensionality, 
cumulativity, 
productEquality, 
functionEquality, 
independent_pairFormation, 
lambdaFormation, 
sqequalRule, 
cut, 
hypothesis, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
universeEquality, 
applyLambdaEquality, 
rename, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
because_Cache, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
independent_isectElimination, 
independent_functionElimination
Latex:
\mforall{}[A,B,C:Type].    A  {}\mrightarrow{}  B  {}\mrightarrow{}  C  \msim{}  (A  \mtimes{}  B)  {}\mrightarrow{}  C
Date html generated:
2017_04_17-AM-09_31_13
Last ObjectModification:
2017_02_27-PM-05_31_31
Theory : equipollence!!cardinality!
Home
Index