Nuprl Lemma : equipollent-function-function

[A,B,C:Type].  A ⟶ B ⟶ (A × B) ⟶ C


Proof




Definitions occuring in Statement :  equipollent: B uall: [x:A]. B[x] function: x:A ⟶ B[x] product: x:A × B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] equipollent: B exists: x:A. B[x] member: t ∈ T biject: Bij(A;B;f) and: P ∧ Q inject: Inj(A;B;f) all: x:A. B[x] implies:  Q prop: surject: Surj(A;B;f) squash: T so_lambda: λ2x.t[x] so_apply: x[s] so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] true: True subtype_rel: A ⊆B uimplies: supposing a guard: {T} iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  equal_wf biject_wf squash_wf true_wf spread_to_pi12 iff_weakening_equal pair_eta_rw
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation dependent_pairFormation lambdaEquality spreadEquality productElimination thin independent_pairEquality hypothesisEquality applyEquality functionExtensionality cumulativity productEquality functionEquality independent_pairFormation lambdaFormation sqequalRule cut hypothesis introduction extract_by_obid sqequalHypSubstitution isectElimination universeEquality applyLambdaEquality rename imageElimination equalityTransitivity equalitySymmetry because_Cache natural_numberEquality imageMemberEquality baseClosed independent_isectElimination independent_functionElimination

Latex:
\mforall{}[A,B,C:Type].    A  {}\mrightarrow{}  B  {}\mrightarrow{}  C  \msim{}  (A  \mtimes{}  B)  {}\mrightarrow{}  C



Date html generated: 2017_04_17-AM-09_31_13
Last ObjectModification: 2017_02_27-PM-05_31_31

Theory : equipollence!!cardinality!


Home Index