Nuprl Lemma : equipollent-identity

[A,B:Type].  (B Unit  B × A)


Proof




Definitions occuring in Statement :  equipollent: B uall: [x:A]. B[x] implies:  Q unit: Unit product: x:A × B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] implies:  Q equipollent: B exists: x:A. B[x] member: t ∈ T so_lambda: λ2x.t[x] so_apply: x[s] biject: Bij(A;B;f) and: P ∧ Q inject: Inj(A;B;f) all: x:A. B[x] prop: surject: Surj(A;B;f) pi2: snd(t)
Lemmas referenced :  pi2_wf equal_wf biject_wf equipollent_wf unit_wf2 equal-unit it_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation dependent_pairFormation lambdaEquality cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality sqequalRule hypothesis productEquality independent_pairFormation universeEquality productElimination independent_pairEquality dependent_functionElimination independent_functionElimination applyEquality

Latex:
\mforall{}[A,B:Type].    (B  \msim{}  Unit  {}\mRightarrow{}  B  \mtimes{}  A  \msim{}  A)



Date html generated: 2016_05_14-PM-04_00_54
Last ObjectModification: 2015_12_26-PM-07_43_54

Theory : equipollence!!cardinality!


Home Index