Nuprl Lemma : equipollent-one

[A:Type]. ∀a:A. {x:A| a ∈ A}  ~ ℕ1


Proof




Definitions occuring in Statement :  equipollent: B int_seg: {i..j-} uall: [x:A]. B[x] all: x:A. B[x] set: {x:A| B[x]}  natural_number: $n universe: Type equal: t ∈ T
Definitions unfolded in proof :  so_apply: x[s] so_lambda: λ2x.t[x] exists: x:A. B[x] implies:  Q rev_implies:  Q and: P ∧ Q iff: ⇐⇒ Q prop: member: t ∈ T all: x:A. B[x] uall: [x:A]. B[x]
Lemmas referenced :  all_wf set_wf equal_wf equipollent-one-iff
Rules used in proof :  universeEquality lambdaEquality sqequalRule because_Cache levelHypothesis addLevel rename setElimination dependent_set_memberEquality dependent_pairFormation independent_functionElimination productElimination hypothesis hypothesisEquality cumulativity setEquality thin isectElimination sqequalHypSubstitution extract_by_obid introduction cut lambdaFormation isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[A:Type].  \mforall{}a:A.  \{x:A|  x  =  a\}    \msim{}  \mBbbN{}1



Date html generated: 2018_05_21-PM-00_52_48
Last ObjectModification: 2017_12_07-PM-06_29_40

Theory : equipollence!!cardinality!


Home Index