Nuprl Lemma : equipollent-product-sum

[A:Type]. ∀[B:A ⟶ Type]. ∀[C:a:A ⟶ B[a] ⟶ Type].  x:A ⟶ (y:B[x] × C[x;y]) f:a:A ⟶ B[a] × (x:A ⟶ C[x;f x])


Proof




Definitions occuring in Statement :  equipollent: B uall: [x:A]. B[x] so_apply: x[s1;s2] so_apply: x[s] apply: a function: x:A ⟶ B[x] product: x:A × B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] equipollent: B exists: x:A. B[x] member: t ∈ T all: x:A. B[x] implies:  Q so_apply: x[s1;s2] so_apply: x[s] prop: pi2: snd(t) subtype_rel: A ⊆B so_lambda: λ2x.t[x] uimplies: supposing a and: P ∧ Q pi1: fst(t) biject: Bij(A;B;f) inject: Inj(A;B;f) surject: Surj(A;B;f)
Lemmas referenced :  equal_wf subtype_rel-equal pi1_wf and_wf biject_wf subtype_rel_self subtype_rel_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation dependent_pairFormation lambdaEquality dependent_pairEquality cut because_Cache thin lambdaFormation introduction extract_by_obid sqequalHypSubstitution isectElimination equalityTransitivity hypothesis equalitySymmetry hypothesisEquality sqequalRule dependent_functionElimination independent_functionElimination cumulativity productElimination applyEquality functionExtensionality productEquality independent_isectElimination dependent_set_memberEquality independent_pairFormation applyLambdaEquality setElimination rename functionEquality universeEquality hyp_replacement

Latex:
\mforall{}[A:Type].  \mforall{}[B:A  {}\mrightarrow{}  Type].  \mforall{}[C:a:A  {}\mrightarrow{}  B[a]  {}\mrightarrow{}  Type].
    x:A  {}\mrightarrow{}  (y:B[x]  \mtimes{}  C[x;y])  \msim{}  f:a:A  {}\mrightarrow{}  B[a]  \mtimes{}  (x:A  {}\mrightarrow{}  C[x;f  x])



Date html generated: 2017_04_17-AM-09_32_38
Last ObjectModification: 2017_02_27-PM-05_32_12

Theory : equipollence!!cardinality!


Home Index