Nuprl Lemma : equipollent-singleton-domain2

[S:Type]. (singleton-type(S)  (∀[A:Type]. S ⟶ A))


Proof




Definitions occuring in Statement :  singleton-type: singleton-type(A) equipollent: B uall: [x:A]. B[x] implies:  Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] implies:  Q singleton-type: singleton-type(A) exists: x:A. B[x] member: t ∈ T equipollent: B prop: biject: Bij(A;B;f) and: P ∧ Q inject: Inj(A;B;f) all: x:A. B[x] surject: Surj(A;B;f) squash: T true: True subtype_rel: A ⊆B uimplies: supposing a guard: {T} iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  equipollent_inversion singleton-type_wf istype-universe biject_wf equal_wf squash_wf true_wf subtype_rel_self iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt lambdaFormation_alt sqequalHypSubstitution productElimination thin rename cut introduction extract_by_obid isectElimination hypothesisEquality functionEquality independent_functionElimination hypothesis inhabitedIsType universeIsType instantiate universeEquality dependent_pairFormation_alt lambdaEquality_alt independent_pairFormation sqequalRule equalityIstype functionIsType because_Cache applyLambdaEquality applyEquality functionExtensionality_alt imageElimination equalityTransitivity equalitySymmetry dependent_functionElimination natural_numberEquality imageMemberEquality baseClosed independent_isectElimination

Latex:
\mforall{}[S:Type].  (singleton-type(S)  {}\mRightarrow{}  (\mforall{}[A:Type].  S  {}\mrightarrow{}  A  \msim{}  A))



Date html generated: 2020_05_19-PM-10_00_30
Last ObjectModification: 2020_01_04-PM-08_00_38

Theory : equipollence!!cardinality!


Home Index