Nuprl Lemma : equipollent-singletons

[A,B:Type].  (singleton-type(A)  singleton-type(B)  B)


Proof




Definitions occuring in Statement :  singleton-type: singleton-type(A) equipollent: B uall: [x:A]. B[x] implies:  Q universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] implies:  Q singleton-type: singleton-type(A) exists: x:A. B[x] equipollent: B member: t ∈ T prop: biject: Bij(A;B;f) and: P ∧ Q inject: Inj(A;B;f) all: x:A. B[x] surject: Surj(A;B;f) squash: T true: True subtype_rel: A ⊆B uimplies: supposing a guard: {T} iff: ⇐⇒ Q rev_implies:  Q cand: c∧ B
Lemmas referenced :  biject_wf singleton-type_wf equal_wf squash_wf true_wf iff_weakening_equal trivial-equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation sqequalHypSubstitution productElimination thin rename dependent_pairFormation lambdaEquality hypothesisEquality cumulativity cut introduction extract_by_obid isectElimination functionExtensionality applyEquality hypothesis universeEquality independent_pairFormation sqequalRule imageElimination equalityTransitivity equalitySymmetry dependent_functionElimination natural_numberEquality imageMemberEquality baseClosed independent_isectElimination independent_functionElimination because_Cache

Latex:
\mforall{}[A,B:Type].    (singleton-type(A)  {}\mRightarrow{}  singleton-type(B)  {}\mRightarrow{}  A  \msim{}  B)



Date html generated: 2017_04_17-AM-09_31_36
Last ObjectModification: 2017_02_27-PM-05_31_36

Theory : equipollence!!cardinality!


Home Index