Nuprl Lemma : altjbar_wf
∀[T,S:Type]. ∀[X:n:ℕ ⟶ (ℕn ⟶ T) ⟶ 𝔹]. ∀[Y:n:ℕ ⟶ (ℕn ⟶ S) ⟶ 𝔹].  (jbar(X;Y) ∈ ℙ)
Proof
Definitions occuring in Statement : 
altjbar: jbar(X;Y), 
int_seg: {i..j-}, 
nat: ℕ, 
bool: 𝔹, 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
member: t ∈ T, 
function: x:A ⟶ B[x], 
natural_number: $n, 
universe: Type
Definitions unfolded in proof : 
implies: P ⇒ Q, 
not: ¬A, 
false: False, 
less_than': less_than'(a;b), 
and: P ∧ Q, 
le: A ≤ B, 
uimplies: b supposing a, 
nat: ℕ, 
subtype_rel: A ⊆r B, 
exists: ∃x:A. B[x], 
or: P ∨ Q, 
all: ∀x:A. B[x], 
prop: ℙ, 
altjbar: jbar(X;Y), 
member: t ∈ T, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
istype-universe, 
bool_wf, 
istype-nat, 
subtype_rel_self, 
istype-false, 
int_seg_subtype_nat, 
int_seg_wf, 
subtype_rel_function, 
assert_wf, 
nat_wf
Rules used in proof : 
universeEquality, 
instantiate, 
Error :inhabitedIsType, 
Error :isectIsTypeImplies, 
Error :isect_memberEquality_alt, 
Error :universeIsType, 
Error :functionIsType, 
equalitySymmetry, 
equalityTransitivity, 
axiomEquality, 
Error :lambdaFormation_alt, 
independent_pairFormation, 
independent_isectElimination, 
because_Cache, 
rename, 
setElimination, 
natural_numberEquality, 
applyEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
productEquality, 
unionEquality, 
hypothesisEquality, 
hypothesis, 
extract_by_obid, 
functionEquality, 
sqequalRule, 
cut, 
introduction, 
Error :isect_memberFormation_alt, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[T,S:Type].  \mforall{}[X:n:\mBbbN{}  {}\mrightarrow{}  (\mBbbN{}n  {}\mrightarrow{}  T)  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[Y:n:\mBbbN{}  {}\mrightarrow{}  (\mBbbN{}n  {}\mrightarrow{}  S)  {}\mrightarrow{}  \mBbbB{}].    (jbar(X;Y)  \mmember{}  \mBbbP{})
Date html generated:
2019_06_20-PM-02_46_13
Last ObjectModification:
2019_06_06-AM-10_49_33
Theory : fan-theorem
Home
Index