Nuprl Lemma : fset-some_wf

[T:Type]. ∀[P:T ⟶ 𝔹]. ∀[s:fset(T)].  (fset-some(s;x.P[x]) ∈ ℙ)


Proof




Definitions occuring in Statement :  fset-some: fset-some(s;x.P[x]) fset: fset(T) bool: 𝔹 uall: [x:A]. B[x] prop: so_apply: x[s] member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  fset-some: fset-some(s;x.P[x]) uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  not_wf assert_wf fset-null_wf fset-filter_wf fset_wf bool_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality lambdaEquality applyEquality hypothesis axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality because_Cache functionEquality universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[P:T  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[s:fset(T)].    (fset-some(s;x.P[x])  \mmember{}  \mBbbP{})



Date html generated: 2016_05_14-PM-03_40_59
Last ObjectModification: 2015_12_26-PM-06_40_37

Theory : finite!sets


Home Index