Nuprl Lemma : up-set_wf

[T:Type]. ∀[eq:EqDecider(T)]. ∀[le:T ⟶ T ⟶ ℙ]. ∀[s:fset(T)].  (up-set(T;eq;x,y.le[x;y];s) ∈ ℙ)


Proof




Definitions occuring in Statement :  up-set: up-set(T;eq;x,y.le[x; y];s) fset: fset(T) deq: EqDecider(T) uall: [x:A]. B[x] prop: so_apply: x[s1;s2] member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T up-set: up-set(T;eq;x,y.le[x; y];s) so_lambda: λ2x.t[x] implies:  Q prop: so_apply: x[s1;s2] so_apply: x[s]
Lemmas referenced :  all_wf fset-member_wf fset_wf deq_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality lambdaEquality functionEquality hypothesis applyEquality axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality because_Cache cumulativity universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[le:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].  \mforall{}[s:fset(T)].    (up-set(T;eq;x,y.le[x;y];s)  \mmember{}  \mBbbP{})



Date html generated: 2016_05_14-PM-03_47_22
Last ObjectModification: 2015_12_26-PM-06_36_45

Theory : finite!sets


Home Index