Nuprl Lemma : fun_exp_add1-sq

[n:ℕ]. ∀[f,x:Top].  (f (f^n x) f^n x)


Proof




Definitions occuring in Statement :  fun_exp: f^n nat: uall: [x:A]. B[x] top: Top apply: a add: m natural_number: $n sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T nat: le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) false: False not: ¬A implies:  Q prop: all: x:A. B[x] top: Top compose: g
Lemmas referenced :  fun_exp_add-sq false_wf le_wf top_wf nat_wf fun_exp1_lemma add-commutes
Rules used in proof :  cut lemma_by_obid sqequalHypSubstitution sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isectElimination thin dependent_set_memberEquality natural_numberEquality sqequalRule independent_pairFormation lambdaFormation hypothesis hypothesisEquality isect_memberFormation because_Cache dependent_functionElimination isect_memberEquality voidElimination voidEquality

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[f,x:Top].    (f  (f\^{}n  x)  \msim{}  f\^{}n  +  1  x)



Date html generated: 2016_05_13-PM-04_07_06
Last ObjectModification: 2015_12_26-AM-11_04_14

Theory : fun_1


Home Index