Nuprl Lemma : test-decide-normalize
∀[a,B:Top].
  (case a of inl(_) => a + 1 | inr(y) => B[y] + a ~ case a of inl(x) => (inl x) + 1 | inr(y) => B[y] + (inr y ))
Proof
Definitions occuring in Statement : 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
so_apply: x[s]
, 
decide: case b of inl(x) => s[x] | inr(y) => t[y]
, 
inr: inr x 
, 
inl: inl x
, 
add: n + m
, 
natural_number: $n
, 
sqequal: s ~ t
Definitions unfolded in proof : 
top: Top
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
has-value: (a)↓
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
Lemmas referenced : 
top_wf, 
equal_wf, 
has-value_wf_base, 
is-exception_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
cut, 
sqequalTransitivity, 
computationStep, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
thin, 
introduction, 
extract_by_obid, 
hypothesis, 
lambdaFormation, 
sqequalSqle, 
divergentSqle, 
callbyvalueDecide, 
sqequalHypSubstitution, 
hypothesisEquality, 
unionEquality, 
unionElimination, 
sqleReflexivity, 
isectElimination, 
equalityTransitivity, 
equalitySymmetry, 
dependent_functionElimination, 
independent_functionElimination, 
decideExceptionCases, 
axiomSqleEquality, 
exceptionSqequal, 
baseApply, 
closedConclusion, 
baseClosed, 
isect_memberFormation, 
sqequalAxiom, 
because_Cache
Latex:
\mforall{}[a,B:Top].
    (case  a  of  inl($_{}$)  =>  a  +  1  |  inr(y)  =>  B[y]  +  a  \msim{}  case  a
      of  inl(x)  =>
      (inl  x)  +  1
      |  inr(y)  =>
      B[y]  +  (inr  y  ))
Date html generated:
2017_04_14-AM-07_35_19
Last ObjectModification:
2017_02_27-PM-03_08_13
Theory : fun_1
Home
Index