Nuprl Lemma : sqntype_product
∀[T,S:Type]. ∀[n:ℕ].  (sqntype(n;T × S)) supposing (sqntype(n;S) and sqntype(n;T))
Proof
Definitions occuring in Statement : 
sqntype: sqntype(n;T)
, 
nat: ℕ
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
product: x:A × B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
sqntype: sqntype(n;T)
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
nat: ℕ
, 
le: A ≤ B
, 
and: P ∧ Q
, 
less_than': less_than'(a;b)
, 
false: False
, 
not: ¬A
Lemmas referenced : 
sqn+1type_product, 
equal-wf-base, 
base_wf, 
sqntype_wf, 
nat_wf, 
sqequal_n_add, 
false_wf, 
le_wf
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
independent_isectElimination, 
lambdaFormation, 
dependent_functionElimination, 
independent_functionElimination, 
productEquality, 
universeEquality, 
Error :axiomSqequalN, 
dependent_set_memberEquality, 
natural_numberEquality, 
sqequalRule, 
independent_pairFormation
Latex:
\mforall{}[T,S:Type].  \mforall{}[n:\mBbbN{}].    (sqntype(n;T  \mtimes{}  S))  supposing  (sqntype(n;S)  and  sqntype(n;T))
Date html generated:
2019_06_20-AM-11_34_04
Last ObjectModification:
2018_08_17-PM-03_51_00
Theory : int_1
Home
Index