Nuprl Lemma : sqequal_n_add
∀x,y:Base. ∀n,m:ℕ.  ((x ~n + m y) 
⇒ (x ~n y))
Proof
Definitions occuring in Statement : 
nat: ℕ
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
add: n + m
, 
base: Base
, 
sqequal_n: s ~n t
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
nat: ℕ
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
not: ¬A
, 
rev_implies: P 
⇐ Q
, 
false: False
, 
prop: ℙ
, 
uiff: uiff(P;Q)
, 
uimplies: b supposing a
, 
sq_stable: SqStable(P)
, 
squash: ↓T
, 
subtract: n - m
, 
subtype_rel: A ⊆r B
, 
top: Top
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
true: True
, 
guard: {T}
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
Lemmas referenced : 
add-zero, 
sqequal_n_wf, 
decidable__le, 
false_wf, 
not-le-2, 
sq_stable__le, 
condition-implies-le, 
minus-add, 
minus-one-mul, 
zero-add, 
minus-one-mul-top, 
minus-zero, 
add-associates, 
add-commutes, 
add_functionality_wrt_le, 
le-add-cancel, 
le_wf, 
sqequaln_sqlen, 
sqle_n_subtype_rel, 
sqlen_sqequaln, 
subtract_wf, 
add_nat_wf, 
equal_wf, 
subtract-add-cancel, 
le_weakening2, 
nat_wf, 
less-iff-le, 
minus-minus, 
add-swap, 
set_wf, 
less_than_wf, 
primrec-wf2, 
base_wf, 
sqequaln_symm
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
thin, 
sqequalHypSubstitution, 
sqequalRule, 
introduction, 
extract_by_obid, 
isectElimination, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
dependent_set_memberEquality, 
addEquality, 
natural_numberEquality, 
dependent_functionElimination, 
unionElimination, 
independent_pairFormation, 
voidElimination, 
productElimination, 
independent_functionElimination, 
independent_isectElimination, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
applyEquality, 
lambdaEquality, 
isect_memberEquality, 
voidEquality, 
intEquality, 
because_Cache, 
minusEquality, 
equalityTransitivity, 
equalitySymmetry, 
functionEquality, 
instantiate
Latex:
\mforall{}x,y:Base.  \mforall{}n,m:\mBbbN{}.    ((x  \msim{}n  +  m  y)  {}\mRightarrow{}  (x  \msim{}n  y))
Date html generated:
2017_04_14-AM-07_32_47
Last ObjectModification:
2017_02_27-PM-03_07_20
Theory : int_1
Home
Index