Nuprl Lemma : sqequal_n_add

x,y:Base. ∀n,m:ℕ.  ((x ~n y)  (x ~n y))


Proof




Definitions occuring in Statement :  nat: all: x:A. B[x] implies:  Q add: m base: Base sqequal_n: ~n t
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q uall: [x:A]. B[x] member: t ∈ T nat: decidable: Dec(P) or: P ∨ Q iff: ⇐⇒ Q and: P ∧ Q not: ¬A rev_implies:  Q false: False prop: uiff: uiff(P;Q) uimplies: supposing a sq_stable: SqStable(P) squash: T subtract: m subtype_rel: A ⊆B top: Top le: A ≤ B less_than': less_than'(a;b) true: True guard: {T} so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  add-zero sqequal_n_wf decidable__le false_wf not-le-2 sq_stable__le condition-implies-le minus-add minus-one-mul zero-add minus-one-mul-top minus-zero add-associates add-commutes add_functionality_wrt_le le-add-cancel le_wf sqequaln_sqlen sqle_n_subtype_rel sqlen_sqequaln subtract_wf add_nat_wf equal_wf subtract-add-cancel le_weakening2 nat_wf less-iff-le minus-minus add-swap set_wf less_than_wf primrec-wf2 base_wf sqequaln_symm
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut thin sqequalHypSubstitution sqequalRule introduction extract_by_obid isectElimination setElimination rename hypothesisEquality hypothesis dependent_set_memberEquality addEquality natural_numberEquality dependent_functionElimination unionElimination independent_pairFormation voidElimination productElimination independent_functionElimination independent_isectElimination imageMemberEquality baseClosed imageElimination applyEquality lambdaEquality isect_memberEquality voidEquality intEquality because_Cache minusEquality equalityTransitivity equalitySymmetry functionEquality instantiate

Latex:
\mforall{}x,y:Base.  \mforall{}n,m:\mBbbN{}.    ((x  \msim{}n  +  m  y)  {}\mRightarrow{}  (x  \msim{}n  y))



Date html generated: 2017_04_14-AM-07_32_47
Last ObjectModification: 2017_02_27-PM-03_07_20

Theory : int_1


Home Index