Nuprl Lemma : classical-markov
∀P:ℕ ⟶ ℙ. ((∀n:ℕ. Dec(P[n])) 
⇒ (¬(∀n:ℕ. (¬P[n]))) 
⇒ (∃n:ℕ. P[n]))
Proof
Definitions occuring in Statement : 
nat: ℕ
, 
decidable: Dec(P)
, 
prop: ℙ
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
classical: {P}
, 
not: ¬A
, 
false: False
, 
exists: ∃x:A. B[x]
, 
squash: ↓T
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
guard: {T}
, 
uimplies: b supposing a
, 
and: P ∧ Q
Lemmas referenced : 
mu-dec_wf, 
it_wf, 
unit_wf2, 
mu-dec-property, 
exists_wf, 
decidable_wf, 
nat_wf, 
all_wf, 
not_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
sqequalRule, 
lambdaEquality, 
applyEquality, 
hypothesisEquality, 
functionEquality, 
cumulativity, 
universeEquality, 
introduction, 
independent_functionElimination, 
dependent_pairFormation, 
voidElimination, 
classicalIntroduction, 
rename, 
setElimination, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
dependent_functionElimination, 
independent_isectElimination, 
equalityTransitivity, 
equalitySymmetry, 
productElimination
Latex:
\mforall{}P:\mBbbN{}  {}\mrightarrow{}  \mBbbP{}.  ((\mforall{}n:\mBbbN{}.  Dec(P[n]))  {}\mRightarrow{}  (\mneg{}(\mforall{}n:\mBbbN{}.  (\mneg{}P[n])))  {}\mRightarrow{}  (\mexists{}n:\mBbbN{}.  P[n]))
Date html generated:
2016_05_14-AM-07_30_25
Last ObjectModification:
2016_01_14-PM-09_58_04
Theory : int_2
Home
Index