Nuprl Lemma : imin_assoc
∀[a,b,c:ℤ].  (imin(a;imin(b;c)) = imin(imin(a;b);c) ∈ ℤ)
Proof
Definitions occuring in Statement : 
imin: imin(a;b)
, 
uall: ∀[x:A]. B[x]
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
squash: ↓T
, 
prop: ℙ
, 
true: True
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
Lemmas referenced : 
minus_mono_wrt_eq, 
imin_wf, 
equal_wf, 
squash_wf, 
true_wf, 
istype-universe, 
minus_imin, 
subtype_rel_self, 
iff_weakening_equal, 
imax_wf, 
imax_assoc, 
istype-int
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
productElimination, 
independent_isectElimination, 
applyEquality, 
Error :lambdaEquality_alt, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
Error :universeIsType, 
Error :inhabitedIsType, 
instantiate, 
universeEquality, 
intEquality, 
natural_numberEquality, 
sqequalRule, 
imageMemberEquality, 
baseClosed, 
because_Cache, 
independent_functionElimination, 
minusEquality, 
Error :isect_memberEquality_alt, 
axiomEquality, 
Error :isectIsTypeImplies
Latex:
\mforall{}[a,b,c:\mBbbZ{}].    (imin(a;imin(b;c))  =  imin(imin(a;b);c))
Date html generated:
2019_06_20-PM-01_13_52
Last ObjectModification:
2019_01_17-AM-08_43_47
Theory : int_2
Home
Index