Nuprl Lemma : imin_assoc

[a,b,c:ℤ].  (imin(a;imin(b;c)) imin(imin(a;b);c) ∈ ℤ)


Proof




Definitions occuring in Statement :  imin: imin(a;b) uall: [x:A]. B[x] int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a squash: T prop: true: True subtype_rel: A ⊆B guard: {T} iff: ⇐⇒ Q rev_implies:  Q implies:  Q
Lemmas referenced :  minus_mono_wrt_eq imin_wf equal_wf squash_wf true_wf istype-universe minus_imin subtype_rel_self iff_weakening_equal imax_wf imax_assoc istype-int
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis productElimination independent_isectElimination applyEquality Error :lambdaEquality_alt,  imageElimination equalityTransitivity equalitySymmetry Error :universeIsType,  Error :inhabitedIsType,  instantiate universeEquality intEquality natural_numberEquality sqequalRule imageMemberEquality baseClosed because_Cache independent_functionElimination minusEquality Error :isect_memberEquality_alt,  axiomEquality Error :isectIsTypeImplies

Latex:
\mforall{}[a,b,c:\mBbbZ{}].    (imin(a;imin(b;c))  =  imin(imin(a;b);c))



Date html generated: 2019_06_20-PM-01_13_52
Last ObjectModification: 2019_01_17-AM-08_43_47

Theory : int_2


Home Index