Nuprl Lemma : minus_mono_wrt_eq

[i,j:ℤ].  uiff(i j ∈ ℤ;(-i) (-j) ∈ ℤ)


Proof




Definitions occuring in Statement :  uiff: uiff(P;Q) uall: [x:A]. B[x] minus: -n int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a prop: subtype_rel: A ⊆B top: Top
Lemmas referenced :  equal_wf minus-one-mul add-swap minus-one-mul-top add-associates add-mul-special zero-mul zero-add add-commutes add-zero
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut independent_pairFormation minusEquality hypothesis lemma_by_obid sqequalHypSubstitution isectElimination thin intEquality hypothesisEquality sqequalRule productElimination independent_pairEquality isect_memberEquality axiomEquality because_Cache equalityTransitivity equalitySymmetry addEquality applyEquality lambdaEquality voidElimination voidEquality natural_numberEquality

Latex:
\mforall{}[i,j:\mBbbZ{}].    uiff(i  =  j;(-i)  =  (-j))



Date html generated: 2016_05_13-PM-03_40_25
Last ObjectModification: 2015_12_26-AM-09_40_24

Theory : arithmetic


Home Index