Nuprl Lemma : minus_mono_wrt_eq
∀[i,j:ℤ].  uiff(i = j ∈ ℤ;(-i) = (-j) ∈ ℤ)
Proof
Definitions occuring in Statement : 
uiff: uiff(P;Q)
, 
uall: ∀[x:A]. B[x]
, 
minus: -n
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
top: Top
Lemmas referenced : 
equal_wf, 
minus-one-mul, 
add-swap, 
minus-one-mul-top, 
add-associates, 
add-mul-special, 
zero-mul, 
zero-add, 
add-commutes, 
add-zero
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
independent_pairFormation, 
minusEquality, 
hypothesis, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
intEquality, 
hypothesisEquality, 
sqequalRule, 
productElimination, 
independent_pairEquality, 
isect_memberEquality, 
axiomEquality, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
addEquality, 
applyEquality, 
lambdaEquality, 
voidElimination, 
voidEquality, 
natural_numberEquality
Latex:
\mforall{}[i,j:\mBbbZ{}].    uiff(i  =  j;(-i)  =  (-j))
Date html generated:
2016_05_13-PM-03_40_25
Last ObjectModification:
2015_12_26-AM-09_40_24
Theory : arithmetic
Home
Index