Nuprl Lemma : int-triangle-inequality2

[a,b:ℤ].  (|a b| ≤ (|a| |b|))


Proof




Definitions occuring in Statement :  absval: |i| uall: [x:A]. B[x] le: A ≤ B subtract: m add: m int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T squash: T prop: subtype_rel: A ⊆B nat: uimplies: supposing a true: True guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q subtract: m le: A ≤ B not: ¬A false: False
Lemmas referenced :  subtract_wf less_than'_wf int-triangle-inequality iff_weakening_equal absval_sym nat_wf absval_wf add_functionality_wrt_eq true_wf squash_wf le_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut applyEquality thin lambdaEquality sqequalHypSubstitution imageElimination lemma_by_obid isectElimination hypothesisEquality equalityTransitivity hypothesis equalitySymmetry intEquality because_Cache sqequalRule minusEquality setElimination rename independent_isectElimination natural_numberEquality imageMemberEquality baseClosed universeEquality productElimination independent_functionElimination independent_pairEquality dependent_functionElimination addEquality axiomEquality isect_memberEquality voidElimination

Latex:
\mforall{}[a,b:\mBbbZ{}].    (|a  -  b|  \mleq{}  (|a|  +  |b|))



Date html generated: 2016_05_14-AM-07_20_54
Last ObjectModification: 2016_01_14-PM-10_02_51

Theory : int_2


Home Index