Nuprl Lemma : int_seg_well_founded_up
∀i:ℤ. ∀j:{i...}.  WellFnd{i}({i..j-};x,y.x < y)
Proof
Definitions occuring in Statement : 
int_upper: {i...}
, 
int_seg: {i..j-}
, 
wellfounded: WellFnd{i}(A;x,y.R[x; y])
, 
less_than: a < b
, 
all: ∀x:A. B[x]
, 
int: ℤ
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
so_lambda: λ2x y.t[x; y]
, 
int_upper: {i...}
, 
so_apply: x[s1;s2]
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
implies: P 
⇒ Q
Lemmas referenced : 
int_upper_wf, 
istype-int, 
int_upper_well_founded, 
inv_image_ind, 
less_than_wf, 
int_seg_wf, 
int_seg_subtype_upper, 
le_reflexive
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :lambdaFormation_alt, 
Error :universeIsType, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
dependent_functionElimination, 
sqequalRule, 
Error :lambdaEquality_alt, 
setElimination, 
rename, 
because_Cache, 
Error :inhabitedIsType, 
applyEquality, 
independent_isectElimination, 
independent_functionElimination
Latex:
\mforall{}i:\mBbbZ{}.  \mforall{}j:\{i...\}.    WellFnd\{i\}(\{i..j\msupminus{}\};x,y.x  <  y)
Date html generated:
2019_06_20-PM-01_15_21
Last ObjectModification:
2018_10_03-PM-10_11_28
Theory : int_2
Home
Index