Nuprl Lemma : int_seg_well_founded_up

i:ℤ. ∀j:{i...}.  WellFnd{i}({i..j-};x,y.x < y)


Proof




Definitions occuring in Statement :  int_upper: {i...} int_seg: {i..j-} wellfounded: WellFnd{i}(A;x,y.R[x; y]) less_than: a < b all: x:A. B[x] int:
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] so_lambda: λ2y.t[x; y] int_upper: {i...} so_apply: x[s1;s2] subtype_rel: A ⊆B uimplies: supposing a implies:  Q
Lemmas referenced :  int_upper_wf istype-int int_upper_well_founded inv_image_ind less_than_wf int_seg_wf int_seg_subtype_upper le_reflexive
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :lambdaFormation_alt,  Error :universeIsType,  cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis dependent_functionElimination sqequalRule Error :lambdaEquality_alt,  setElimination rename because_Cache Error :inhabitedIsType,  applyEquality independent_isectElimination independent_functionElimination

Latex:
\mforall{}i:\mBbbZ{}.  \mforall{}j:\{i...\}.    WellFnd\{i\}(\{i..j\msupminus{}\};x,y.x  <  y)



Date html generated: 2019_06_20-PM-01_15_21
Last ObjectModification: 2018_10_03-PM-10_11_28

Theory : int_2


Home Index