Nuprl Lemma : sq_stable__ex_int_upper

n:ℤ. ∀[P:{n...} ⟶ ℙ]. ((∀m:{n...}. Dec(P[m]))  SqStable(∃m:{n...}. P[m]))


Proof




Definitions occuring in Statement :  int_upper: {i...} sq_stable: SqStable(P) decidable: Dec(P) uall: [x:A]. B[x] prop: so_apply: x[s] all: x:A. B[x] exists: x:A. B[x] implies:  Q function: x:A ⟶ B[x] int:
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] implies:  Q sq_stable: SqStable(P) member: t ∈ T squash: T uimplies: supposing a guard: {T} prop: exists: x:A. B[x] so_apply: x[s] and: P ∧ Q subtype_rel: A ⊆B decidable: Dec(P) or: P ∨ Q top: Top not: ¬A false: False isl: isl(x) assert: b ifthenelse: if then else fi  btrue: tt true: True bfalse: ff outl: outl(x)
Lemmas referenced :  mu-ge-property2 squash_wf int_upper_wf istype-int_upper decidable_wf istype-int mu-ge_wf2 subtype_rel_union subtype_rel_self not_wf top_wf istype-void istype-assert btrue_wf bfalse_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :lambdaFormation_alt,  Error :isect_memberFormation_alt,  rename introduction sqequalHypSubstitution imageElimination cut extract_by_obid dependent_functionElimination thin because_Cache isectElimination hypothesisEquality independent_isectElimination hypothesis Error :universeIsType,  sqequalRule productEquality applyEquality Error :functionIsType,  universeEquality productElimination functionExtensionality Error :lambdaEquality_alt,  instantiate Error :isect_memberEquality_alt,  voidElimination Error :unionIsType,  Error :dependent_pairFormation_alt,  Error :inhabitedIsType,  unionElimination Error :equalityIstype,  equalityTransitivity equalitySymmetry independent_functionElimination natural_numberEquality Error :dependent_pairEquality_alt

Latex:
\mforall{}n:\mBbbZ{}.  \mforall{}[P:\{n...\}  {}\mrightarrow{}  \mBbbP{}].  ((\mforall{}m:\{n...\}.  Dec(P[m]))  {}\mRightarrow{}  SqStable(\mexists{}m:\{n...\}.  P[m]))



Date html generated: 2019_06_20-PM-01_16_59
Last ObjectModification: 2019_01_09-PM-03_00_42

Theory : int_2


Home Index