Nuprl Lemma : assert-null-base
∀[as:Base]. uiff(null(as) ~ tt;as ~ [])
Proof
Definitions occuring in Statement : 
null: null(as), 
nil: [], 
btrue: tt, 
uiff: uiff(P;Q), 
uall: ∀[x:A]. B[x], 
base: Base, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
uimplies: b supposing a, 
bool: 𝔹, 
null: null(as), 
has-value: (a)↓, 
sq_type: SQType(T), 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
guard: {T}, 
nil: [], 
it: ⋅, 
btrue: tt, 
or: P ∨ Q, 
bfalse: ff, 
not: ¬A, 
false: False
Lemmas referenced : 
not-btrue-sqeq-bfalse, 
bottom_diverge, 
has-value-implies-dec-ispair-2, 
has-value-implies-dec-isaxiom-2, 
base_wf, 
btrue_wf, 
unit_wf2, 
union-value-type, 
bool_wf, 
value-type-has-value, 
subtype_rel_self, 
subtype_base_sq
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
independent_pairFormation, 
thin, 
instantiate, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
because_Cache, 
independent_isectElimination, 
hypothesis, 
sqequalRule, 
callbyvalueIspair, 
dependent_functionElimination, 
hypothesisEquality, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
sqequalAxiom, 
sqequalIntensionalEquality, 
baseApply, 
closedConclusion, 
baseClosed, 
productElimination, 
independent_pairEquality, 
isect_memberEquality, 
unionElimination, 
voidElimination
Latex:
\mforall{}[as:Base].  uiff(null(as)  \msim{}  tt;as  \msim{}  [])
Date html generated:
2016_05_14-AM-06_30_39
Last ObjectModification:
2016_01_14-PM-08_25_15
Theory : list_0
Home
Index