Nuprl Lemma : colist-fix-partial

[A:Type]
  (∀[T:Type]. ∀[f:⋂L:Type. ((L ⟶ partial(A)) ⟶ (Unit ⋃ (T × L)) ⟶ partial(A))].
     (fix(f) ∈ colist(T) ⟶ partial(A))) supposing 
     (mono(A) and 
     value-type(A))


Proof




Definitions occuring in Statement :  colist: colist(T) partial: partial(T) mono: mono(T) value-type: value-type(T) b-union: A ⋃ B uimplies: supposing a uall: [x:A]. B[x] unit: Unit member: t ∈ T fix: fix(F) isect: x:A. B[x] function: x:A ⟶ B[x] product: x:A × B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a colist: colist(T) so_lambda: λ2x.t[x] so_apply: x[s] prop:
Lemmas referenced :  fix_wf_corec-partial1 b-union_wf unit_wf2 list-functor partial_wf mono_wf value-type_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality independent_isectElimination hypothesis sqequalRule lambdaEquality productEquality universeEquality axiomEquality equalityTransitivity equalitySymmetry isectEquality cumulativity functionEquality isect_memberEquality because_Cache

Latex:
\mforall{}[A:Type]
    (\mforall{}[T:Type].  \mforall{}[f:\mcap{}L:Type.  ((L  {}\mrightarrow{}  partial(A))  {}\mrightarrow{}  (Unit  \mcup{}  (T  \mtimes{}  L))  {}\mrightarrow{}  partial(A))].
          (fix(f)  \mmember{}  colist(T)  {}\mrightarrow{}  partial(A)))  supposing 
          (mono(A)  and 
          value-type(A))



Date html generated: 2016_05_14-AM-06_25_21
Last ObjectModification: 2015_12_26-PM-00_42_37

Theory : list_0


Home Index