Nuprl Lemma : colist-fix-partial
∀[A:Type]
  (∀[T:Type]. ∀[f:⋂L:Type. ((L ⟶ partial(A)) ⟶ (Unit ⋃ (T × L)) ⟶ partial(A))].
     (fix(f) ∈ colist(T) ⟶ partial(A))) supposing 
     (mono(A) and 
     value-type(A))
Proof
Definitions occuring in Statement : 
colist: colist(T)
, 
partial: partial(T)
, 
mono: mono(T)
, 
value-type: value-type(T)
, 
b-union: A ⋃ B
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
unit: Unit
, 
member: t ∈ T
, 
fix: fix(F)
, 
isect: ⋂x:A. B[x]
, 
function: x:A ⟶ B[x]
, 
product: x:A × B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
colist: colist(T)
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
prop: ℙ
Lemmas referenced : 
fix_wf_corec-partial1, 
b-union_wf, 
unit_wf2, 
list-functor, 
partial_wf, 
mono_wf, 
value-type_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
independent_isectElimination, 
hypothesis, 
sqequalRule, 
lambdaEquality, 
productEquality, 
universeEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isectEquality, 
cumulativity, 
functionEquality, 
isect_memberEquality, 
because_Cache
Latex:
\mforall{}[A:Type]
    (\mforall{}[T:Type].  \mforall{}[f:\mcap{}L:Type.  ((L  {}\mrightarrow{}  partial(A))  {}\mrightarrow{}  (Unit  \mcup{}  (T  \mtimes{}  L))  {}\mrightarrow{}  partial(A))].
          (fix(f)  \mmember{}  colist(T)  {}\mrightarrow{}  partial(A)))  supposing 
          (mono(A)  and 
          value-type(A))
Date html generated:
2016_05_14-AM-06_25_21
Last ObjectModification:
2015_12_26-PM-00_42_37
Theory : list_0
Home
Index