Nuprl Lemma : list-cases2
∀[T:Type]. ∀x:T List. ((x ~ []) ∨ (x ~ [hd(x) / tl(x)]))
Proof
Definitions occuring in Statement : 
tl: tl(l)
, 
hd: hd(l)
, 
cons: [a / b]
, 
nil: []
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
or: P ∨ Q
, 
universe: Type
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
or: P ∨ Q
, 
cons: [a / b]
, 
top: Top
, 
squash: ↓T
, 
prop: ℙ
, 
true: True
, 
uimplies: b supposing a
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
Lemmas referenced : 
list-cases, 
istype-sqequal, 
product_subtype_list, 
reduce_hd_cons_lemma, 
istype-void, 
reduce_tl_cons_lemma, 
list_wf, 
istype-universe, 
istype_wf, 
squash_wf, 
true_wf, 
not-cons-sq-nil, 
iff_weakening_equal
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
Error :lambdaFormation_alt, 
cut, 
hypothesisEquality, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
dependent_functionElimination, 
unionElimination, 
Error :inlFormation_alt, 
baseClosed, 
promote_hyp, 
hypothesis_subsumption, 
productElimination, 
sqequalRule, 
Error :isect_memberEquality_alt, 
voidElimination, 
Error :inrFormation_alt, 
Error :universeIsType, 
instantiate, 
universeEquality, 
applyEquality, 
Error :lambdaEquality_alt, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
natural_numberEquality, 
imageMemberEquality, 
independent_isectElimination, 
independent_functionElimination
Latex:
\mforall{}[T:Type].  \mforall{}x:T  List.  ((x  \msim{}  [])  \mvee{}  (x  \msim{}  [hd(x)  /  tl(x)]))
Date html generated:
2019_06_20-PM-00_38_38
Last ObjectModification:
2018_10_18-PM-01_26_32
Theory : list_0
Home
Index