Nuprl Lemma : list-cases2

[T:Type]. ∀x:T List. ((x []) ∨ (x [hd(x) tl(x)]))


Proof




Definitions occuring in Statement :  tl: tl(l) hd: hd(l) cons: [a b] nil: [] list: List uall: [x:A]. B[x] all: x:A. B[x] or: P ∨ Q universe: Type sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] member: t ∈ T or: P ∨ Q cons: [a b] top: Top squash: T prop: true: True uimplies: supposing a guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q
Lemmas referenced :  list-cases istype-sqequal product_subtype_list reduce_hd_cons_lemma istype-void reduce_tl_cons_lemma list_wf istype-universe istype_wf squash_wf true_wf not-cons-sq-nil iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  Error :lambdaFormation_alt,  cut hypothesisEquality introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesis dependent_functionElimination unionElimination Error :inlFormation_alt,  baseClosed promote_hyp hypothesis_subsumption productElimination sqequalRule Error :isect_memberEquality_alt,  voidElimination Error :inrFormation_alt,  Error :universeIsType,  instantiate universeEquality applyEquality Error :lambdaEquality_alt,  imageElimination equalityTransitivity equalitySymmetry natural_numberEquality imageMemberEquality independent_isectElimination independent_functionElimination

Latex:
\mforall{}[T:Type].  \mforall{}x:T  List.  ((x  \msim{}  [])  \mvee{}  (x  \msim{}  [hd(x)  /  tl(x)]))



Date html generated: 2019_06_20-PM-00_38_38
Last ObjectModification: 2018_10_18-PM-01_26_32

Theory : list_0


Home Index