Nuprl Lemma : map_append
∀[A,B:Type]. ∀[f:A ⟶ B]. ∀[as,as':A List]. (map(f;as @ as') = (map(f;as) @ map(f;as')) ∈ (B List))
Proof
Definitions occuring in Statement :
map: map(f;as)
,
append: as @ bs
,
list: T List
,
uall: ∀[x:A]. B[x]
,
function: x:A ⟶ B[x]
,
universe: Type
,
equal: s = t ∈ T
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
top: Top
Lemmas referenced :
map_append_sq,
append_wf,
map_wf,
list_wf
Rules used in proof :
sqequalSubstitution,
sqequalRule,
sqequalReflexivity,
cut,
lemma_by_obid,
sqequalHypSubstitution,
sqequalTransitivity,
computationStep,
isectElimination,
thin,
isect_memberEquality,
voidElimination,
voidEquality,
hypothesis,
isect_memberFormation,
introduction,
hypothesisEquality,
axiomEquality,
equalityTransitivity,
equalitySymmetry,
because_Cache,
functionEquality,
universeEquality
Latex:
\mforall{}[A,B:Type]. \mforall{}[f:A {}\mrightarrow{} B]. \mforall{}[as,as':A List]. (map(f;as @ as') = (map(f;as) @ map(f;as')))
Date html generated:
2016_05_14-AM-06_32_40
Last ObjectModification:
2015_12_26-PM-00_37_27
Theory : list_0
Home
Index