Nuprl Lemma : merge-int-one-one

[T:Type]
  ∀[as,bs,cs:T List].
    (as bs ∈ (T List)) supposing 
       ((merge-int(cs;as) merge-int(cs;bs) ∈ (T List)) and 
       sorted(bs) and 
       sorted(as) and 
       sorted(cs)) 
  supposing T ⊆r ℤ


Proof




Definitions occuring in Statement :  sorted: sorted(L) merge-int: merge-int(as;bs) list: List uimplies: supposing a subtype_rel: A ⊆B uall: [x:A]. B[x] int: universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a prop: and: P ∧ Q cand: c∧ B true: True squash: T subtype_rel: A ⊆B guard: {T} iff: ⇐⇒ Q implies:  Q
Lemmas referenced :  equal_wf list_wf merge-int_wf sorted_wf subtype_rel_wf merge-int-1-1 squash_wf true_wf merge-int-comm iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut hypothesis extract_by_obid sqequalHypSubstitution isectElimination thin cumulativity hypothesisEquality independent_isectElimination sqequalRule isect_memberEquality axiomEquality because_Cache equalityTransitivity equalitySymmetry intEquality universeEquality independent_pairFormation natural_numberEquality applyEquality lambdaEquality imageElimination imageMemberEquality baseClosed productElimination independent_functionElimination

Latex:
\mforall{}[T:Type]
    \mforall{}[as,bs,cs:T  List].
        (as  =  bs)  supposing 
              ((merge-int(cs;as)  =  merge-int(cs;bs))  and 
              sorted(bs)  and 
              sorted(as)  and 
              sorted(cs)) 
    supposing  T  \msubseteq{}r  \mBbbZ{}



Date html generated: 2017_04_14-AM-08_49_59
Last ObjectModification: 2017_02_27-PM-03_35_25

Theory : list_0


Home Index