Nuprl Lemma : merge-int-one-one
∀[T:Type]
  ∀[as,bs,cs:T List].
    (as = bs ∈ (T List)) supposing 
       ((merge-int(cs;as) = merge-int(cs;bs) ∈ (T List)) and 
       sorted(bs) and 
       sorted(as) and 
       sorted(cs)) 
  supposing T ⊆r ℤ
Proof
Definitions occuring in Statement : 
sorted: sorted(L)
, 
merge-int: merge-int(as;bs)
, 
list: T List
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
int: ℤ
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
prop: ℙ
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
true: True
, 
squash: ↓T
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
implies: P 
⇒ Q
Lemmas referenced : 
equal_wf, 
list_wf, 
merge-int_wf, 
sorted_wf, 
subtype_rel_wf, 
merge-int-1-1, 
squash_wf, 
true_wf, 
merge-int-comm, 
iff_weakening_equal
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
hypothesis, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
cumulativity, 
hypothesisEquality, 
independent_isectElimination, 
sqequalRule, 
isect_memberEquality, 
axiomEquality, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
intEquality, 
universeEquality, 
independent_pairFormation, 
natural_numberEquality, 
applyEquality, 
lambdaEquality, 
imageElimination, 
imageMemberEquality, 
baseClosed, 
productElimination, 
independent_functionElimination
Latex:
\mforall{}[T:Type]
    \mforall{}[as,bs,cs:T  List].
        (as  =  bs)  supposing 
              ((merge-int(cs;as)  =  merge-int(cs;bs))  and 
              sorted(bs)  and 
              sorted(as)  and 
              sorted(cs)) 
    supposing  T  \msubseteq{}r  \mBbbZ{}
Date html generated:
2017_04_14-AM-08_49_59
Last ObjectModification:
2017_02_27-PM-03_35_25
Theory : list_0
Home
Index