Nuprl Lemma : add-nth_wf
∀[T:Type]. ∀[L:T List]. ∀[n:ℕ]. ∀[x:T]. (add-nth(n;x;L) ∈ T List)
Proof
Definitions occuring in Statement :
add-nth: add-nth(n;x;L)
,
list: T List
,
nat: ℕ
,
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
universe: Type
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
add-nth: add-nth(n;x;L)
,
nat: ℕ
Lemmas referenced :
append_wf,
firstn_wf,
cons_wf,
nth_tl_wf,
nat_wf,
list_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
sqequalRule,
lemma_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
hypothesisEquality,
setElimination,
rename,
hypothesis,
axiomEquality,
equalityTransitivity,
equalitySymmetry,
isect_memberEquality,
because_Cache,
universeEquality
Latex:
\mforall{}[T:Type]. \mforall{}[L:T List]. \mforall{}[n:\mBbbN{}]. \mforall{}[x:T]. (add-nth(n;x;L) \mmember{} T List)
Date html generated:
2016_05_14-PM-01_55_04
Last ObjectModification:
2015_12_26-PM-05_40_12
Theory : list_1
Home
Index