Nuprl Lemma : bigger-int_wf

[n:ℤ]. ∀[L:ℤ List].  (bigger-int(n;L) ∈ ℤ)


Proof




Definitions occuring in Statement :  bigger-int: bigger-int(n;L) list: List uall: [x:A]. B[x] member: t ∈ T int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T bigger-int: bigger-int(n;L) so_lambda: λ2y.t[x; y] has-value: (a)↓ uimplies: supposing a so_apply: x[s1;s2]
Lemmas referenced :  list_accum_wf value-type-has-value int-value-type ifthenelse_wf le_int_wf list_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin intEquality because_Cache hypothesisEquality lambdaEquality callbyvalueReduce independent_isectElimination hypothesis addEquality natural_numberEquality axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality

Latex:
\mforall{}[n:\mBbbZ{}].  \mforall{}[L:\mBbbZ{}  List].    (bigger-int(n;L)  \mmember{}  \mBbbZ{})



Date html generated: 2016_05_14-PM-01_55_26
Last ObjectModification: 2015_12_26-PM-05_41_05

Theory : list_1


Home Index