Nuprl Lemma : bigger-int_wf
∀[n:ℤ]. ∀[L:ℤ List].  (bigger-int(n;L) ∈ ℤ)
Proof
Definitions occuring in Statement : 
bigger-int: bigger-int(n;L)
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
bigger-int: bigger-int(n;L)
, 
so_lambda: λ2x y.t[x; y]
, 
has-value: (a)↓
, 
uimplies: b supposing a
, 
so_apply: x[s1;s2]
Lemmas referenced : 
list_accum_wf, 
value-type-has-value, 
int-value-type, 
ifthenelse_wf, 
le_int_wf, 
list_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
intEquality, 
because_Cache, 
hypothesisEquality, 
lambdaEquality, 
callbyvalueReduce, 
independent_isectElimination, 
hypothesis, 
addEquality, 
natural_numberEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality
Latex:
\mforall{}[n:\mBbbZ{}].  \mforall{}[L:\mBbbZ{}  List].    (bigger-int(n;L)  \mmember{}  \mBbbZ{})
Date html generated:
2016_05_14-PM-01_55_26
Last ObjectModification:
2015_12_26-PM-05_41_05
Theory : list_1
Home
Index