Nuprl Lemma : bigger-int_wf
∀[n:ℤ]. ∀[L:ℤ List]. (bigger-int(n;L) ∈ ℤ)
Proof
Definitions occuring in Statement :
bigger-int: bigger-int(n;L)
,
list: T List
,
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
int: ℤ
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
bigger-int: bigger-int(n;L)
,
so_lambda: λ2x y.t[x; y]
,
has-value: (a)↓
,
uimplies: b supposing a
,
so_apply: x[s1;s2]
Lemmas referenced :
list_accum_wf,
value-type-has-value,
int-value-type,
ifthenelse_wf,
le_int_wf,
list_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
sqequalRule,
lemma_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
intEquality,
because_Cache,
hypothesisEquality,
lambdaEquality,
callbyvalueReduce,
independent_isectElimination,
hypothesis,
addEquality,
natural_numberEquality,
axiomEquality,
equalityTransitivity,
equalitySymmetry,
isect_memberEquality
Latex:
\mforall{}[n:\mBbbZ{}]. \mforall{}[L:\mBbbZ{} List]. (bigger-int(n;L) \mmember{} \mBbbZ{})
Date html generated:
2016_05_14-PM-01_55_26
Last ObjectModification:
2015_12_26-PM-05_41_05
Theory : list_1
Home
Index