Nuprl Lemma : comparison-trans
∀[T:Type]. ∀cmp:comparison(T). Trans(T;x,y.0 ≤ (cmp x y))
Proof
Definitions occuring in Statement : 
comparison: comparison(T), 
trans: Trans(T;x,y.E[x; y]), 
uall: ∀[x:A]. B[x], 
le: A ≤ B, 
all: ∀x:A. B[x], 
apply: f a, 
natural_number: $n, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
all: ∀x:A. B[x], 
trans: Trans(T;x,y.E[x; y]), 
implies: P ⇒ Q, 
comparison: comparison(T), 
sq_stable: SqStable(P), 
and: P ∧ Q, 
squash: ↓T, 
prop: ℙ, 
le: A ≤ B, 
not: ¬A, 
false: False, 
guard: {T}
Lemmas referenced : 
less_than'_wf, 
comparison_wf, 
le_wf, 
sq_stable__le
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaFormation, 
sqequalHypSubstitution, 
setElimination, 
thin, 
rename, 
lemma_by_obid, 
isectElimination, 
natural_numberEquality, 
applyEquality, 
hypothesisEquality, 
hypothesis, 
independent_functionElimination, 
productElimination, 
sqequalRule, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
dependent_functionElimination, 
lambdaEquality, 
independent_pairEquality, 
voidElimination, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
because_Cache, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}cmp:comparison(T).  Trans(T;x,y.0  \mleq{}  (cmp  x  y))
Date html generated:
2016_05_14-PM-02_38_08
Last ObjectModification:
2016_01_15-AM-07_42_07
Theory : list_1
Home
Index