Nuprl Lemma : iseg_weakening2
∀[T:Type]. ∀l1,l2:T List. l1 ≤ l2 supposing l1 = l2 ∈ (T List)
Proof
Definitions occuring in Statement :
iseg: l1 ≤ l2
,
list: T List
,
uimplies: b supposing a
,
uall: ∀[x:A]. B[x]
,
all: ∀x:A. B[x]
,
universe: Type
,
equal: s = t ∈ T
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
all: ∀x:A. B[x]
,
uimplies: b supposing a
,
member: t ∈ T
,
squash: ↓T
,
prop: ℙ
,
true: True
,
subtype_rel: A ⊆r B
,
guard: {T}
,
iff: P
⇐⇒ Q
,
and: P ∧ Q
,
rev_implies: P
⇐ Q
,
implies: P
⇒ Q
Lemmas referenced :
equal_wf,
iseg_weakening,
iff_weakening_equal,
list_wf,
true_wf,
squash_wf,
iseg_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
lambdaFormation,
cut,
introduction,
axiomEquality,
hypothesis,
thin,
rename,
applyEquality,
lambdaEquality,
sqequalHypSubstitution,
imageElimination,
lemma_by_obid,
isectElimination,
hypothesisEquality,
equalityTransitivity,
equalitySymmetry,
universeEquality,
natural_numberEquality,
sqequalRule,
imageMemberEquality,
baseClosed,
independent_isectElimination,
productElimination,
independent_functionElimination,
because_Cache,
dependent_functionElimination
Latex:
\mforall{}[T:Type]. \mforall{}l1,l2:T List. l1 \mleq{} l2 supposing l1 = l2
Date html generated:
2016_05_14-PM-01_31_53
Last ObjectModification:
2016_01_15-AM-08_26_57
Theory : list_1
Home
Index