Nuprl Lemma : list-closed-test_wf
∀[T:Type]. ∀L:T List. ∀f:T ⟶ (T List). ∀d:EqDecider(T).  (list-closed-test(f;d;L) ∈ {b:𝔹| ↑b 
⇐⇒ list-closed(T;L;f)} )
Proof
Definitions occuring in Statement : 
list-closed-test: list-closed-test(f;d;L)
, 
list-closed: list-closed(T;L;f)
, 
list: T List
, 
deq: EqDecider(T)
, 
assert: ↑b
, 
bool: 𝔹
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
member: t ∈ T
, 
set: {x:A| B[x]} 
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
false: False
, 
not: ¬A
, 
uimplies: b supposing a
, 
rev_implies: P 
⇐ Q
, 
and: P ∧ Q
, 
iff: P 
⇐⇒ Q
, 
isl: isl(x)
, 
or: P ∨ Q
, 
decidable: Dec(P)
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
list-closed-test: list-closed-test(f;d;L)
, 
decidable__list-closed2-ext, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
btrue_neq_bfalse, 
assert_elim, 
bfalse_wf, 
assert_of_tt, 
istype-assert, 
btrue_wf, 
istype-universe, 
list-closed_wf, 
decidable_wf, 
deq_wf, 
list_wf, 
decidable__list-closed2-ext
Rules used in proof : 
voidElimination, 
independent_isectElimination, 
Error :productIsType, 
independent_pairFormation, 
Error :dependent_set_memberEquality_alt, 
unionElimination, 
universeEquality, 
Error :functionIsTypeImplies, 
axiomEquality, 
independent_functionElimination, 
dependent_functionElimination, 
Error :equalityIstype, 
instantiate, 
because_Cache, 
thin, 
sqequalHypSubstitution, 
extract_by_obid, 
Error :universeIsType, 
Error :functionIsType, 
Error :inhabitedIsType, 
Error :isectIsType, 
hypothesis, 
equalitySymmetry, 
equalityTransitivity, 
hypothesisEquality, 
isectElimination, 
Error :lambdaEquality_alt, 
applyEquality, 
sqequalRule, 
Error :lambdaFormation_alt, 
cut, 
introduction, 
Error :isect_memberFormation_alt, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[T:Type]
    \mforall{}L:T  List.  \mforall{}f:T  {}\mrightarrow{}  (T  List).  \mforall{}d:EqDecider(T).
        (list-closed-test(f;d;L)  \mmember{}  \{b:\mBbbB{}|  \muparrow{}b  \mLeftarrow{}{}\mRightarrow{}  list-closed(T;L;f)\}  )
Date html generated:
2019_06_20-PM-01_51_45
Last ObjectModification:
2019_06_19-PM-04_35_16
Theory : list_1
Home
Index