Nuprl Lemma : list-closed-test_wf

[T:Type]. ∀L:T List. ∀f:T ⟶ (T List). ∀d:EqDecider(T).  (list-closed-test(f;d;L) ∈ {b:𝔹| ↑⇐⇒ list-closed(T;L;f)} )


Proof




Definitions occuring in Statement :  list-closed-test: list-closed-test(f;d;L) list-closed: list-closed(T;L;f) list: List deq: EqDecider(T) assert: b bool: 𝔹 uall: [x:A]. B[x] all: x:A. B[x] iff: ⇐⇒ Q member: t ∈ T set: {x:A| B[x]}  function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  false: False not: ¬A uimplies: supposing a rev_implies:  Q and: P ∧ Q iff: ⇐⇒ Q isl: isl(x) or: P ∨ Q decidable: Dec(P) implies:  Q prop: subtype_rel: A ⊆B list-closed-test: list-closed-test(f;d;L) decidable__list-closed2-ext all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  btrue_neq_bfalse assert_elim bfalse_wf assert_of_tt istype-assert btrue_wf istype-universe list-closed_wf decidable_wf deq_wf list_wf decidable__list-closed2-ext
Rules used in proof :  voidElimination independent_isectElimination Error :productIsType,  independent_pairFormation Error :dependent_set_memberEquality_alt,  unionElimination universeEquality Error :functionIsTypeImplies,  axiomEquality independent_functionElimination dependent_functionElimination Error :equalityIstype,  instantiate because_Cache thin sqequalHypSubstitution extract_by_obid Error :universeIsType,  Error :functionIsType,  Error :inhabitedIsType,  Error :isectIsType,  hypothesis equalitySymmetry equalityTransitivity hypothesisEquality isectElimination Error :lambdaEquality_alt,  applyEquality sqequalRule Error :lambdaFormation_alt,  cut introduction Error :isect_memberFormation_alt,  sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[T:Type]
    \mforall{}L:T  List.  \mforall{}f:T  {}\mrightarrow{}  (T  List).  \mforall{}d:EqDecider(T).
        (list-closed-test(f;d;L)  \mmember{}  \{b:\mBbbB{}|  \muparrow{}b  \mLeftarrow{}{}\mRightarrow{}  list-closed(T;L;f)\}  )



Date html generated: 2019_06_20-PM-01_51_45
Last ObjectModification: 2019_06_19-PM-04_35_16

Theory : list_1


Home Index