Nuprl Lemma : list-prod-set-type
∀[A,T:Type]. ∀[L:(A × T) List]. ∀[P:T ⟶ ℙ].  L ∈ (A × {x:T| P[x]} ) List supposing (∀p∈L.P[snd(p)])
Proof
Definitions occuring in Statement : 
l_all: (∀x∈L.P[x])
, 
list: T List
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
pi2: snd(t)
, 
member: t ∈ T
, 
set: {x:A| B[x]} 
, 
function: x:A ⟶ B[x]
, 
product: x:A × B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
, 
pi2: snd(t)
Lemmas referenced : 
list-set-type2, 
pi2_wf, 
subtype_rel_list, 
l_all_wf, 
l_member_wf, 
list_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
productEquality, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality, 
applyEquality, 
hypothesis, 
independent_isectElimination, 
setEquality, 
universeEquality, 
because_Cache, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
setElimination, 
rename, 
isect_memberEquality, 
functionEquality, 
cumulativity, 
productElimination, 
independent_pairEquality, 
dependent_set_memberEquality
Latex:
\mforall{}[A,T:Type].  \mforall{}[L:(A  \mtimes{}  T)  List].  \mforall{}[P:T  {}\mrightarrow{}  \mBbbP{}].    L  \mmember{}  (A  \mtimes{}  \{x:T|  P[x]\}  )  List  supposing  (\mforall{}p\mmember{}L.P[snd(p)])
Date html generated:
2016_05_14-AM-07_49_02
Last ObjectModification:
2015_12_26-PM-04_45_19
Theory : list_1
Home
Index