Nuprl Lemma : list-prod-set-type

[A,T:Type]. ∀[L:(A × T) List]. ∀[P:T ⟶ ℙ].  L ∈ (A × {x:T| P[x]} List supposing (∀p∈L.P[snd(p)])


Proof




Definitions occuring in Statement :  l_all: (∀x∈L.P[x]) list: List uimplies: supposing a uall: [x:A]. B[x] prop: so_apply: x[s] pi2: snd(t) member: t ∈ T set: {x:A| B[x]}  function: x:A ⟶ B[x] product: x:A × B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a so_lambda: λ2x.t[x] so_apply: x[s] subtype_rel: A ⊆B prop: pi2: snd(t)
Lemmas referenced :  list-set-type2 pi2_wf subtype_rel_list l_all_wf l_member_wf list_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin productEquality hypothesisEquality sqequalRule lambdaEquality applyEquality hypothesis independent_isectElimination setEquality universeEquality because_Cache axiomEquality equalityTransitivity equalitySymmetry setElimination rename isect_memberEquality functionEquality cumulativity productElimination independent_pairEquality dependent_set_memberEquality

Latex:
\mforall{}[A,T:Type].  \mforall{}[L:(A  \mtimes{}  T)  List].  \mforall{}[P:T  {}\mrightarrow{}  \mBbbP{}].    L  \mmember{}  (A  \mtimes{}  \{x:T|  P[x]\}  )  List  supposing  (\mforall{}p\mmember{}L.P[snd(p)])



Date html generated: 2016_05_14-AM-07_49_02
Last ObjectModification: 2015_12_26-PM-04_45_19

Theory : list_1


Home Index