Nuprl Lemma : map-conversion-test

[T:Type]. ∀[L:T List List]. (map(λX.(X []);L) map(λX.X;L)) supposing T ⊆Base


Proof




Definitions occuring in Statement :  map: map(f;as) append: as bs nil: [] list: List uimplies: supposing a subtype_rel: A ⊆B uall: [x:A]. B[x] lambda: λx.A[x] base: Base universe: Type sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a all: x:A. B[x] implies:  Q subtype_rel: A ⊆B top: Top prop:
Lemmas referenced :  l_member_wf top_wf subtype_rel_list append-nil list_subtype_base map_functionality_wrt_sq base_wf subtype_rel_wf list_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalAxiom hypothesis lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality sqequalRule isect_memberEquality because_Cache equalityTransitivity equalitySymmetry universeEquality independent_isectElimination baseClosed lambdaFormation applyEquality lambdaEquality voidElimination voidEquality

Latex:
\mforall{}[T:Type].  \mforall{}[L:T  List  List].  (map(\mlambda{}X.(X  @  []);L)  \msim{}  map(\mlambda{}X.X;L))  supposing  T  \msubseteq{}r  Base



Date html generated: 2016_05_14-PM-01_57_39
Last ObjectModification: 2016_01_15-AM-08_11_37

Theory : list_1


Home Index