Nuprl Lemma : map_functionality_wrt_sq
∀[T:Type]. ∀[f,g:Base]. ∀[L:T List].  map(f;L) ~ map(g;L) supposing ∀x:T. ((x ∈ L) ⇒ (f x ~ g x)) supposing T ⊆r Base
Proof
Definitions occuring in Statement : 
l_member: (x ∈ l), 
map: map(f;as), 
list: T List, 
uimplies: b supposing a, 
subtype_rel: A ⊆r B, 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
apply: f a, 
base: Base, 
universe: Type, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
prop: ℙ, 
so_lambda: λ2x.t[x], 
implies: P ⇒ Q, 
subtype_rel: A ⊆r B, 
so_apply: x[s], 
all: ∀x:A. B[x], 
nat: ℕ, 
false: False, 
ge: i ≥ j , 
not: ¬A, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
top: Top, 
and: P ∧ Q, 
or: P ∨ Q, 
cons: [a / b], 
colength: colength(L), 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2], 
guard: {T}, 
decidable: Dec(P), 
nil: [], 
it: ⋅, 
sq_type: SQType(T), 
less_than: a < b, 
squash: ↓T, 
less_than': less_than'(a;b), 
rev_implies: P ⇐ Q, 
iff: P ⇐⇒ Q
Lemmas referenced : 
list_wf, 
base_wf, 
subtype_rel_wf, 
all_wf, 
l_member_wf, 
sqequal-wf-base, 
nat_properties, 
full-omega-unsat, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
ge_wf, 
less_than_wf, 
equal-wf-T-base, 
nat_wf, 
colength_wf_list, 
int_subtype_base, 
list-cases, 
map_nil_lemma, 
product_subtype_list, 
spread_cons_lemma, 
intformeq_wf, 
itermAdd_wf, 
int_formula_prop_eq_lemma, 
int_term_value_add_lemma, 
decidable__le, 
intformnot_wf, 
int_formula_prop_not_lemma, 
le_wf, 
equal_wf, 
subtract_wf, 
itermSubtract_wf, 
int_term_value_subtract_lemma, 
subtype_base_sq, 
set_subtype_base, 
decidable__equal_int, 
map_cons_lemma, 
nil_wf, 
cons_wf, 
cons_member
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
sqequalHypSubstitution, 
isect_memberEquality, 
isectElimination, 
thin, 
hypothesisEquality, 
axiomSqEquality, 
hypothesis, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
Error :universeIsType, 
extract_by_obid, 
Error :inhabitedIsType, 
lambdaEquality, 
functionEquality, 
baseApply, 
closedConclusion, 
baseClosed, 
applyEquality, 
universeEquality, 
lambdaFormation, 
setElimination, 
rename, 
intWeakElimination, 
natural_numberEquality, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
dependent_functionElimination, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
unionElimination, 
promote_hyp, 
hypothesis_subsumption, 
productElimination, 
applyLambdaEquality, 
dependent_set_memberEquality, 
addEquality, 
instantiate, 
cumulativity, 
imageElimination, 
isect_memberFormation, 
Error :functionIsType, 
sqequalIntensionalEquality, 
inrFormation, 
inlFormation
Latex:
\mforall{}[T:Type]
    \mforall{}[f,g:Base].  \mforall{}[L:T  List].    map(f;L)  \msim{}  map(g;L)  supposing  \mforall{}x:T.  ((x  \mmember{}  L)  {}\mRightarrow{}  (f  x  \msim{}  g  x)) 
    supposing  T  \msubseteq{}r  Base
Date html generated:
2019_06_20-PM-01_33_19
Last ObjectModification:
2018_09_26-PM-06_00_39
Theory : list_1
Home
Index