Nuprl Lemma : mapfilter-nil

[T:Type]. ∀[L:T List]. ∀[P:{x:T| (x ∈ L)}  ⟶ 𝔹]. ∀[f:Top].  mapfilter(f;P;L) [] supposing (∀x∈L.¬↑(P x))


Proof




Definitions occuring in Statement :  mapfilter: mapfilter(f;P;L) l_all: (∀x∈L.P[x]) l_member: (x ∈ l) nil: [] list: List assert: b bool: 𝔹 uimplies: supposing a uall: [x:A]. B[x] top: Top not: ¬A set: {x:A| B[x]}  apply: a function: x:A ⟶ B[x] universe: Type sqequal: t
Definitions unfolded in proof :  mapfilter: mapfilter(f;P;L) member: t ∈ T uall: [x:A]. B[x] so_lambda: λ2x.t[x] prop: so_apply: x[s] uimplies: supposing a all: x:A. B[x] top: Top
Lemmas referenced :  l_all_wf not_wf assert_wf l_member_wf top_wf bool_wf list_wf filter_is_nil3 map_nil_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality sqequalRule lambdaEquality applyEquality hypothesis setEquality because_Cache functionEquality universeEquality isect_memberFormation introduction sqequalAxiom isect_memberEquality equalityTransitivity equalitySymmetry independent_isectElimination dependent_functionElimination voidElimination voidEquality

Latex:
\mforall{}[T:Type].  \mforall{}[L:T  List].  \mforall{}[P:\{x:T|  (x  \mmember{}  L)\}    {}\mrightarrow{}  \mBbbB{}].  \mforall{}[f:Top].
    mapfilter(f;P;L)  \msim{}  []  supposing  (\mforall{}x\mmember{}L.\mneg{}\muparrow{}(P  x))



Date html generated: 2016_05_14-PM-01_28_24
Last ObjectModification: 2015_12_26-PM-05_21_15

Theory : list_1


Home Index