Nuprl Lemma : mapfilter-nil
∀[T:Type]. ∀[L:T List]. ∀[P:{x:T| (x ∈ L)}  ⟶ 𝔹]. ∀[f:Top].  mapfilter(f;P;L) ~ [] supposing (∀x∈L.¬↑(P x))
Proof
Definitions occuring in Statement : 
mapfilter: mapfilter(f;P;L)
, 
l_all: (∀x∈L.P[x])
, 
l_member: (x ∈ l)
, 
nil: []
, 
list: T List
, 
assert: ↑b
, 
bool: 𝔹
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
not: ¬A
, 
set: {x:A| B[x]} 
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
sqequal: s ~ t
Definitions unfolded in proof : 
mapfilter: mapfilter(f;P;L)
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
top: Top
Lemmas referenced : 
l_all_wf, 
not_wf, 
assert_wf, 
l_member_wf, 
top_wf, 
bool_wf, 
list_wf, 
filter_is_nil3, 
map_nil_lemma
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality, 
applyEquality, 
hypothesis, 
setEquality, 
because_Cache, 
functionEquality, 
universeEquality, 
isect_memberFormation, 
introduction, 
sqequalAxiom, 
isect_memberEquality, 
equalityTransitivity, 
equalitySymmetry, 
independent_isectElimination, 
dependent_functionElimination, 
voidElimination, 
voidEquality
Latex:
\mforall{}[T:Type].  \mforall{}[L:T  List].  \mforall{}[P:\{x:T|  (x  \mmember{}  L)\}    {}\mrightarrow{}  \mBbbB{}].  \mforall{}[f:Top].
    mapfilter(f;P;L)  \msim{}  []  supposing  (\mforall{}x\mmember{}L.\mneg{}\muparrow{}(P  x))
Date html generated:
2016_05_14-PM-01_28_24
Last ObjectModification:
2015_12_26-PM-05_21_15
Theory : list_1
Home
Index