Nuprl Lemma : property-from-l_member

[T:Type]. ∀x:T. ∀[P:T ⟶ ℙ]. ((∀x:T. SqStable(P[x]))  (∀d:{i:T| P[i]}  List. ((x ∈ d)  P[x])))


Proof




Definitions occuring in Statement :  l_member: (x ∈ l) list: List sq_stable: SqStable(P) uall: [x:A]. B[x] prop: so_apply: x[s] all: x:A. B[x] implies:  Q set: {x:A| B[x]}  function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] implies:  Q uimplies: supposing a subtype_rel: A ⊆B so_apply: x[s] prop: so_lambda: λ2x.t[x] squash: T sq_stable: SqStable(P)
Lemmas referenced :  sq_stable_wf all_wf list_wf subtype_rel_list l_member_wf l_member_settype
Rules used in proof :  cut lemma_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality lambdaFormation independent_isectElimination applyEquality setEquality because_Cache sqequalRule lambdaEquality setElimination rename universeEquality functionEquality cumulativity imageMemberEquality baseClosed introduction imageElimination dependent_functionElimination independent_functionElimination

Latex:
\mforall{}[T:Type].  \mforall{}x:T.  \mforall{}[P:T  {}\mrightarrow{}  \mBbbP{}].  ((\mforall{}x:T.  SqStable(P[x]))  {}\mRightarrow{}  (\mforall{}d:\{i:T|  P[i]\}    List.  ((x  \mmember{}  d)  {}\mRightarrow{}  P[x])))



Date html generated: 2016_05_14-AM-07_48_42
Last ObjectModification: 2016_01_15-AM-08_32_39

Theory : list_1


Home Index