Nuprl Lemma : singleton_before
∀[T:Type]. ∀a,x,y:T.  (x before y ∈ [a] 
⇐⇒ False)
Proof
Definitions occuring in Statement : 
l_before: x before y ∈ l
, 
cons: [a / b]
, 
nil: []
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
false: False
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
l_before: x before y ∈ l
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
false: False
, 
or: P ∨ Q
, 
member: t ∈ T
, 
prop: ℙ
, 
rev_implies: P 
⇐ Q
, 
guard: {T}
Lemmas referenced : 
or_wf, 
equal_wf, 
false_wf, 
cons_sublist_nil, 
nil_wf, 
cons_wf, 
sublist_wf, 
iff_wf, 
cons_sublist_cons
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
cut, 
independent_pairFormation, 
sqequalHypSubstitution, 
unionElimination, 
thin, 
productElimination, 
voidElimination, 
hypothesis, 
introduction, 
extract_by_obid, 
isectElimination, 
productEquality, 
hypothesisEquality, 
addLevel, 
independent_functionElimination, 
inlFormation, 
because_Cache, 
dependent_functionElimination, 
sqequalRule, 
inrFormation, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}a,x,y:T.    (x  before  y  \mmember{}  [a]  \mLeftarrow{}{}\mRightarrow{}  False)
Date html generated:
2019_06_20-PM-01_23_15
Last ObjectModification:
2018_08_24-PM-11_30_00
Theory : list_1
Home
Index