Nuprl Lemma : singleton_before

[T:Type]. ∀a,x,y:T.  (x before y ∈ [a] ⇐⇒ False)


Proof




Definitions occuring in Statement :  l_before: before y ∈ l cons: [a b] nil: [] uall: [x:A]. B[x] all: x:A. B[x] iff: ⇐⇒ Q false: False universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] l_before: before y ∈ l iff: ⇐⇒ Q and: P ∧ Q implies:  Q false: False or: P ∨ Q member: t ∈ T prop: rev_implies:  Q guard: {T}
Lemmas referenced :  or_wf equal_wf false_wf cons_sublist_nil nil_wf cons_wf sublist_wf iff_wf cons_sublist_cons
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut independent_pairFormation sqequalHypSubstitution unionElimination thin productElimination voidElimination hypothesis introduction extract_by_obid isectElimination productEquality hypothesisEquality addLevel independent_functionElimination inlFormation because_Cache dependent_functionElimination sqequalRule inrFormation universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}a,x,y:T.    (x  before  y  \mmember{}  [a]  \mLeftarrow{}{}\mRightarrow{}  False)



Date html generated: 2019_06_20-PM-01_23_15
Last ObjectModification: 2018_08_24-PM-11_30_00

Theory : list_1


Home Index