Nuprl Lemma : sq_stable-finite-type-onto
∀[A,B:Type].  (finite-type(A) 
⇒ (∀x,y:B.  Dec(x = y ∈ B)) 
⇒ (∀f:A ⟶ B. ∀b:B.  SqStable(∃a:A. ((f a) = b ∈ B))))
Proof
Definitions occuring in Statement : 
finite-type: finite-type(T)
, 
sq_stable: SqStable(P)
, 
decidable: Dec(P)
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
implies: P 
⇒ Q
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
sq_stable: SqStable(P)
, 
member: t ∈ T
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
exists: ∃x:A. B[x]
, 
prop: ℙ
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
squash: ↓T
, 
false: False
, 
not: ¬A
Lemmas referenced : 
squash_wf, 
exists_wf, 
equal_wf, 
decidable_wf, 
finite-type_wf, 
istype-universe, 
decidable-exists-finite-type
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
Error :lambdaFormation_alt, 
Error :universeIsType, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
sqequalRule, 
Error :lambdaEquality_alt, 
applyEquality, 
hypothesis, 
Error :functionIsType, 
because_Cache, 
Error :inhabitedIsType, 
instantiate, 
universeEquality, 
independent_functionElimination, 
dependent_functionElimination, 
unionElimination, 
imageElimination, 
voidElimination
Latex:
\mforall{}[A,B:Type].
    (finite-type(A)  {}\mRightarrow{}  (\mforall{}x,y:B.    Dec(x  =  y))  {}\mRightarrow{}  (\mforall{}f:A  {}\mrightarrow{}  B.  \mforall{}b:B.    SqStable(\mexists{}a:A.  ((f  a)  =  b))))
Date html generated:
2019_06_20-PM-01_32_28
Last ObjectModification:
2018_10_30-PM-01_36_41
Theory : list_1
Home
Index