Nuprl Lemma : sq_stable-finite-type-onto

[A,B:Type].  (finite-type(A)  (∀x,y:B.  Dec(x y ∈ B))  (∀f:A ⟶ B. ∀b:B.  SqStable(∃a:A. ((f a) b ∈ B))))


Proof




Definitions occuring in Statement :  finite-type: finite-type(T) sq_stable: SqStable(P) decidable: Dec(P) uall: [x:A]. B[x] all: x:A. B[x] exists: x:A. B[x] implies:  Q apply: a function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] implies:  Q all: x:A. B[x] sq_stable: SqStable(P) member: t ∈ T so_lambda: λ2x.t[x] so_apply: x[s] exists: x:A. B[x] prop: decidable: Dec(P) or: P ∨ Q squash: T false: False not: ¬A
Lemmas referenced :  squash_wf exists_wf equal_wf decidable_wf finite-type_wf istype-universe decidable-exists-finite-type
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  Error :lambdaFormation_alt,  Error :universeIsType,  cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality sqequalRule Error :lambdaEquality_alt,  applyEquality hypothesis Error :functionIsType,  because_Cache Error :inhabitedIsType,  instantiate universeEquality independent_functionElimination dependent_functionElimination unionElimination imageElimination voidElimination

Latex:
\mforall{}[A,B:Type].
    (finite-type(A)  {}\mRightarrow{}  (\mforall{}x,y:B.    Dec(x  =  y))  {}\mRightarrow{}  (\mforall{}f:A  {}\mrightarrow{}  B.  \mforall{}b:B.    SqStable(\mexists{}a:A.  ((f  a)  =  b))))



Date html generated: 2019_06_20-PM-01_32_28
Last ObjectModification: 2018_10_30-PM-01_36_41

Theory : list_1


Home Index