Nuprl Lemma : decidable-exists-finite-type

[T:Type]. (finite-type(T)  (∀[P:T ⟶ ℙ]. ((∀t:T. Dec(P[t]))  Dec(∃t:T. P[t]))))


Proof




Definitions occuring in Statement :  finite-type: finite-type(T) decidable: Dec(P) uall: [x:A]. B[x] prop: so_apply: x[s] all: x:A. B[x] exists: x:A. B[x] implies:  Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] implies:  Q finite-type: finite-type(T) exists: x:A. B[x] all: x:A. B[x] member: t ∈ T nat: so_lambda: λ2x.t[x] so_apply: x[s] decidable: Dec(P) or: P ∨ Q prop: not: ¬A false: False surject: Surj(A;B;f) subtype_rel: A ⊆B uimplies: supposing a guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q
Lemmas referenced :  decidable__exists_int_seg int_seg_wf all_wf decidable_wf finite-type_wf not_wf exists_wf iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation sqequalHypSubstitution productElimination thin cut instantiate lemma_by_obid dependent_functionElimination natural_numberEquality setElimination rename hypothesisEquality isectElimination sqequalRule lambdaEquality applyEquality hypothesis independent_functionElimination unionElimination functionEquality cumulativity universeEquality inlFormation dependent_pairFormation inrFormation introduction voidElimination because_Cache equalityTransitivity equalitySymmetry independent_isectElimination

Latex:
\mforall{}[T:Type].  (finite-type(T)  {}\mRightarrow{}  (\mforall{}[P:T  {}\mrightarrow{}  \mBbbP{}].  ((\mforall{}t:T.  Dec(P[t]))  {}\mRightarrow{}  Dec(\mexists{}t:T.  P[t]))))



Date html generated: 2016_05_14-PM-01_51_22
Last ObjectModification: 2015_12_26-PM-05_37_35

Theory : list_1


Home Index