Nuprl Lemma : decidable-exists-finite-type
∀[T:Type]. (finite-type(T) 
⇒ (∀[P:T ⟶ ℙ]. ((∀t:T. Dec(P[t])) 
⇒ Dec(∃t:T. P[t]))))
Proof
Definitions occuring in Statement : 
finite-type: finite-type(T)
, 
decidable: Dec(P)
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
finite-type: finite-type(T)
, 
exists: ∃x:A. B[x]
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
nat: ℕ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
prop: ℙ
, 
not: ¬A
, 
false: False
, 
surject: Surj(A;B;f)
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
decidable__exists_int_seg, 
int_seg_wf, 
all_wf, 
decidable_wf, 
finite-type_wf, 
not_wf, 
exists_wf, 
iff_weakening_equal
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
sqequalHypSubstitution, 
productElimination, 
thin, 
cut, 
instantiate, 
lemma_by_obid, 
dependent_functionElimination, 
natural_numberEquality, 
setElimination, 
rename, 
hypothesisEquality, 
isectElimination, 
sqequalRule, 
lambdaEquality, 
applyEquality, 
hypothesis, 
independent_functionElimination, 
unionElimination, 
functionEquality, 
cumulativity, 
universeEquality, 
inlFormation, 
dependent_pairFormation, 
inrFormation, 
introduction, 
voidElimination, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
independent_isectElimination
Latex:
\mforall{}[T:Type].  (finite-type(T)  {}\mRightarrow{}  (\mforall{}[P:T  {}\mrightarrow{}  \mBbbP{}].  ((\mforall{}t:T.  Dec(P[t]))  {}\mRightarrow{}  Dec(\mexists{}t:T.  P[t]))))
Date html generated:
2016_05_14-PM-01_51_22
Last ObjectModification:
2015_12_26-PM-05_37_35
Theory : list_1
Home
Index