Nuprl Lemma : coprime_functionality_wrt_eqmod2
∀a,a',m:ℤ.  ((a' ≡ a mod m) 
⇒ (CoPrime(m,a') 
⇐⇒ CoPrime(m,a)))
Proof
Definitions occuring in Statement : 
eqmod: a ≡ b mod m
, 
coprime: CoPrime(a,b)
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
implies: P 
⇒ Q
, 
int: ℤ
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
member: t ∈ T
, 
rev_implies: P 
⇐ Q
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
Lemmas referenced : 
coprime_inversion, 
coprime_wf, 
iff_wf, 
eqmod_wf, 
coprime_functionality_wrt_eqmod
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
addLevel, 
sqequalHypSubstitution, 
productElimination, 
thin, 
independent_pairFormation, 
impliesFunctionality, 
lemma_by_obid, 
dependent_functionElimination, 
hypothesisEquality, 
hypothesis, 
independent_functionElimination, 
because_Cache, 
isectElimination, 
intEquality
Latex:
\mforall{}a,a',m:\mBbbZ{}.    ((a'  \mequiv{}  a  mod  m)  {}\mRightarrow{}  (CoPrime(m,a')  \mLeftarrow{}{}\mRightarrow{}  CoPrime(m,a)))
Date html generated:
2016_05_14-PM-04_22_41
Last ObjectModification:
2015_12_26-PM-08_18_34
Theory : num_thy_1
Home
Index