Nuprl Lemma : divides_instance

6


Proof




Definitions occuring in Statement :  divides: a natural_number: $n
Definitions unfolded in proof :  member: t ∈ T subtype_rel: A ⊆B all: x:A. B[x] uall: [x:A]. B[x] so_lambda: λ2x.t[x] so_apply: x[s] prop: decidable: Dec(P) or: P ∨ Q uimplies: supposing a assert: b ifthenelse: if then else fi  isl: isl(x) decidable__divides_ext btrue: tt true: True
Lemmas referenced :  decidable__divides_ext subtype_rel_self all_wf decidable_wf divides_wf outl_wf not_wf
Rules used in proof :  cut sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity applyEquality instantiate extract_by_obid hypothesis thin sqequalRule introduction sqequalHypSubstitution isectElimination functionEquality intEquality lambdaEquality hypothesisEquality natural_numberEquality applyLambdaEquality equalityTransitivity equalitySymmetry independent_isectElimination

Latex:
3  |  6



Date html generated: 2018_05_21-PM-00_54_08
Last ObjectModification: 2018_05_19-AM-06_33_48

Theory : num_thy_1


Home Index