Nuprl Lemma : exp_assoced
∀n:ℕ+. ∀x,y:ℤ.  (x^n ~ y^n 
⇐⇒ x ~ y)
Proof
Definitions occuring in Statement : 
assoced: a ~ b
, 
exp: i^n
, 
nat_plus: ℕ+
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
int: ℤ
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
subtype_rel: A ⊆r B
, 
rev_implies: P 
⇐ Q
, 
assoced: a ~ b
, 
exists: ∃x:A. B[x]
, 
uimplies: b supposing a
Lemmas referenced : 
assoced_wf, 
exp_wf2, 
nat_plus_subtype_nat, 
nat_plus_wf, 
exp-divides-exp2, 
divides_wf, 
assoced_functionality_wrt_assoced, 
exp_functionality_wrt_assoced, 
assoced_weakening
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
independent_pairFormation, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
applyEquality, 
hypothesis, 
sqequalRule, 
because_Cache, 
intEquality, 
productElimination, 
promote_hyp, 
dependent_functionElimination, 
independent_functionElimination, 
dependent_pairFormation, 
independent_isectElimination
Latex:
\mforall{}n:\mBbbN{}\msupplus{}.  \mforall{}x,y:\mBbbZ{}.    (x\^{}n  \msim{}  y\^{}n  \mLeftarrow{}{}\mRightarrow{}  x  \msim{}  y)
Date html generated:
2018_05_21-PM-01_11_05
Last ObjectModification:
2018_01_28-PM-02_04_05
Theory : num_thy_1
Home
Index