Nuprl Lemma : int-between
∀i,j:ℤ.  ∃k:ℤ. ((i ≤ k) ∧ k < j) supposing i < j
Proof
Definitions occuring in Statement : 
less_than: a < b
, 
uimplies: b supposing a
, 
le: A ≤ B
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
and: P ∧ Q
, 
int: ℤ
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
exists: ∃x:A. B[x]
, 
and: P ∧ Q
, 
prop: ℙ
Lemmas referenced : 
member-less_than, 
le_weakening, 
and_wf, 
le_wf, 
less_than_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
isect_memberFormation, 
cut, 
introduction, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
independent_isectElimination, 
hypothesis, 
rename, 
dependent_pairFormation, 
because_Cache, 
independent_pairFormation, 
dependent_functionElimination, 
intEquality
Latex:
\mforall{}i,j:\mBbbZ{}.    \mexists{}k:\mBbbZ{}.  ((i  \mleq{}  k)  \mwedge{}  k  <  j)  supposing  i  <  j
Date html generated:
2019_06_20-PM-02_37_37
Last ObjectModification:
2019_06_12-PM-00_26_16
Theory : num_thy_1
Home
Index