Nuprl Lemma : isOdd-2n+1

n:ℤ(isOdd((2 n) 1) tt)


Proof




Definitions occuring in Statement :  isOdd: isOdd(n) btrue: tt all: x:A. B[x] multiply: m add: m natural_number: $n int: sqequal: t
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a uiff: uiff(P;Q) and: P ∧ Q rev_uimplies: rev_uimplies(P;Q) iff: ⇐⇒ Q rev_implies:  Q implies:  Q exists: x:A. B[x] subtype_rel: A ⊆B sq_type: SQType(T) guard: {T}
Lemmas referenced :  subtype_base_sq bool_wf bool_subtype_base eqtt_to_assert isOdd_wf assert-isOdd int_subtype_base istype-int
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :lambdaFormation_alt,  cut thin instantiate introduction extract_by_obid sqequalHypSubstitution isectElimination cumulativity hypothesis independent_isectElimination addEquality multiplyEquality natural_numberEquality hypothesisEquality productElimination dependent_functionElimination independent_functionElimination Error :dependent_pairFormation_alt,  Error :equalityIstype,  Error :inhabitedIsType,  sqequalRule baseApply closedConclusion baseClosed applyEquality sqequalBase equalitySymmetry equalityTransitivity

Latex:
\mforall{}n:\mBbbZ{}.  (isOdd((2  *  n)  +  1)  \msim{}  tt)



Date html generated: 2019_06_20-PM-02_24_37
Last ObjectModification: 2019_02_01-AM-11_23_05

Theory : num_thy_1


Home Index