Nuprl Lemma : lcm-com-nat
∀n,m:ℕ.  (lcm(n;m) = lcm(m;n) ∈ ℤ)
Proof
Definitions occuring in Statement : 
lcm: lcm(a;b)
, 
nat: ℕ
, 
all: ∀x:A. B[x]
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
prop: ℙ
, 
nat: ℕ
, 
guard: {T}
Lemmas referenced : 
lcm-is-lcm-nat, 
lcm-unique-nat, 
lcm_wf_nat, 
divides_wf, 
nat_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
because_Cache, 
isectElimination, 
hypothesis, 
independent_functionElimination, 
productElimination, 
independent_pairFormation, 
setElimination, 
rename, 
intEquality
Latex:
\mforall{}n,m:\mBbbN{}.    (lcm(n;m)  =  lcm(m;n))
Date html generated:
2016_05_14-PM-09_25_35
Last ObjectModification:
2015_12_26-PM-08_02_49
Theory : num_thy_1
Home
Index