Nuprl Lemma : lcm-com-nat

n,m:ℕ.  (lcm(n;m) lcm(m;n) ∈ ℤ)


Proof




Definitions occuring in Statement :  lcm: lcm(a;b) nat: all: x:A. B[x] int: equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] implies:  Q and: P ∧ Q cand: c∧ B prop: nat: guard: {T}
Lemmas referenced :  lcm-is-lcm-nat lcm-unique-nat lcm_wf_nat divides_wf nat_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut lemma_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality because_Cache isectElimination hypothesis independent_functionElimination productElimination independent_pairFormation setElimination rename intEquality

Latex:
\mforall{}n,m:\mBbbN{}.    (lcm(n;m)  =  lcm(m;n))



Date html generated: 2016_05_14-PM-09_25_35
Last ObjectModification: 2015_12_26-PM-08_02_49

Theory : num_thy_1


Home Index