Nuprl Lemma : lcm-unique-nat

n,m,l:ℕ.  ((((n l) ∧ (m l)) ∧ (∀v:ℤ((n v)  (m v)  (l v))))  (l lcm(n;m) ∈ ℤ))


Proof




Definitions occuring in Statement :  lcm: lcm(a;b) divides: a nat: all: x:A. B[x] implies:  Q and: P ∧ Q int: equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q and: P ∧ Q member: t ∈ T nat: decidable: Dec(P) or: P ∨ Q uall: [x:A]. B[x] uimplies: supposing a sq_type: SQType(T) guard: {T} prop: so_lambda: λ2x.t[x] so_apply: x[s] divides: a exists: x:A. B[x] lcm: lcm(a;b) has-value: (a)↓ eq_int: (i =z j) ifthenelse: if then else fi  btrue: tt ge: i ≥  satisfiable_int_formula: satisfiable_int_formula(fmla) false: False not: ¬A top: Top bool: 𝔹 unit: Unit it: uiff: uiff(P;Q) bfalse: ff bnot: ¬bb assert: b nequal: a ≠ b ∈  nat_plus: + le: A ≤ B iff: ⇐⇒ Q rev_implies:  Q subtype_rel: A ⊆B less_than': less_than'(a;b) true: True subtract: m cand: c∧ B
Lemmas referenced :  decidable__equal_int subtype_base_sq int_subtype_base divides_wf all_wf nat_wf value-type-has-value int-value-type set-value-type le_wf gcd_wf nat_properties satisfiable-full-omega-tt intformand_wf intformnot_wf intformeq_wf itermVar_wf itermConstant_wf itermMultiply_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_var_lemma int_term_value_constant_lemma int_term_value_mul_lemma int_formula_prop_wf eq_int_wf bool_wf eqtt_to_assert assert_of_eq_int eqff_to_assert equal_wf bool_cases_sqequal bool_subtype_base assert-bnot neg_assert_of_eq_int lcm-unique decidable__lt false_wf not-lt-2 not-equal-2 add_functionality_wrt_le add-associates add-zero zero-add le-add-cancel condition-implies-le add-commutes minus-add minus-zero less_than_wf int_entire intformor_wf int_formula_prop_or_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut sqequalHypSubstitution productElimination thin introduction extract_by_obid dependent_functionElimination setElimination rename because_Cache hypothesis natural_numberEquality unionElimination instantiate isectElimination cumulativity intEquality independent_isectElimination independent_functionElimination productEquality hypothesisEquality sqequalRule lambdaEquality functionEquality equalityTransitivity equalitySymmetry callbyvalueReduce dependent_pairFormation int_eqEquality isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll equalityElimination promote_hyp dependent_set_memberEquality addEquality applyEquality minusEquality multiplyEquality

Latex:
\mforall{}n,m,l:\mBbbN{}.    ((((n  |  l)  \mwedge{}  (m  |  l))  \mwedge{}  (\mforall{}v:\mBbbZ{}.  ((n  |  v)  {}\mRightarrow{}  (m  |  v)  {}\mRightarrow{}  (l  |  v))))  {}\mRightarrow{}  (l  =  lcm(n;m)))



Date html generated: 2017_04_17-AM-09_46_51
Last ObjectModification: 2017_02_27-PM-05_41_09

Theory : num_thy_1


Home Index